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Jokainen jdrjestelmd voidaan jakaa toimintapisteisiin, joissa jirjestelmén toi-
minta on erilaista. Jarjestelmé ja toimintapisteet voivat olla miltein mitd vain
mielekkddsti hahmotettavia késitteitd. Autolla ajon voidaan ndhda jakautuvan
toimintapisteisiin "sula tie” ja "liukas tie”: liukkaalla tielld auton reagointi ohjauk-
seen on merkittavisti erilaista suhteessa reagointiin sulalla tielld. Ongelma on
ihmiselle intuitiivisesti hyvin helppo ymmértda, mutta koneoppimisjérjestelmélle
ndinkin yksinkertaista toimintapisteiden tunnistamista voidaan pitda ylivoimai-
sena perinteisilld ldhestymistavoilla.

Tiedossa on useita erilaisia menetelmid, jotka mahdollistavat tunnettujen toi-
mintapisteiden kiyton ja halutun toiminnan tuottamisen eri toimintapisteissa.
Tutkielmassa kuvataan joitakin néistd menetelmisté ja esimerkkitapauksia niiden
kiytosta. Téassd kandidaatintyossd havaitaan useiden eri aivoalueiden kykenevin
sekd reagoimaan erilaisiin toimintapisteisiin ettd oppimaan toimintapisteet. Nama
mekanismit palvelevat muita aivoalueita ilmoittamalla elion toimintapisteen,
mikd mahdollistaa laajan adaptaation erilaisiin tilanteisiin.

Tutkielmassa esitelldiin yksinkertaisten toimintapisterajojen manuaalista opetta-
mista koneoppimismenetelmille. Talla menetelméllda voidaan laajentaa yksinker-
taisissa sovelluksissa koneen toimintaa merkittavasti. TyGssd tutustutaan myos
kolmeen erilaiseen koneoppimismenetelméén, jotka kykenevit tunnistamaan au-
tomaattisesti jarjestelmén toimintapisteen vaihtumisen ja jirjestelmén kayttéyty-
misen eri toimintapisteissa.

Avainsanat: koneoppiminen, ohjaamaton oppiminen, korrelaatiorakenne, Boltz-
mannin kone
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Luku 1

Johdanto

Maailma koostuu toimintatiloista. Jossakin tilanteessa suotuisa toiminta voi olla
toisessa tilanteessa virheellinen. Esimerkiksi autoa ajaessa sdfolosuhteet vaikutta-
vat kriittisesti ajotyyliin; liukkaalla ajettaessa auton kiyttdytyminen on aivan eri-
laista suhteessa sulaan tiehen, joten lopputulos olisi haitallinen, mikili ajaja jattai-
si huomiotta sadolosuhteen maidradmén toimintatilan. Naitd erilaisia toimintatiloja
nimitetadn toimintapisteiksi.

Monet perinteiset koneoopimismenetelmét olettavat opittavan aineiston muodostu-
neen yhden tietyn toimintapisteen ymparistossa. Useissa tapauksissa mallin rakenne
onkin etukiteen tédysin tiedossa, jolloin tarpeellista on ainoastaan mallin paramet-
rien madrittdminen kiyttden saatavilla olevaa aineistoa. Vaikka tdménkaltainen 1&-
hestymistapa on mielekdis monissa tapauksissa, voivat ldhestymistavan sisdltdmét
rajoitukset olla joissakin tapauksissa liikaa. Aineisto ei kuitenkaan aina ole muo-
dostunut vain yhdessd toimintapisteessd, eikd toimintapisteiden méaarad tai sopivaa
toimintaa etukdteen tunneta. Thmisresursseja ei mahdollisesti haluta kayttda on-
gelman tarkkaan méérittelyyn. Toimintapisteiden méirittdminen etukiteen voi olla
my6s ihmiselle ylivoimaista ongelman luonteen takia.

Tunnettaessa toimintapisteet ja niitd vastaavat mallit voidaan haluttu toiminta saa-
vuttaa kidyttaméalla asiantuntijain kirjo -menetelméé (mixture of experts). Menetel-
mé tunnistaa toimintapisteen ja antaa sitd vastaavan mallin muodostaa toiminnan.
Téaten voidaan todeta, ettd mallin ollessa tiedossa sen kiyttdminen ei ole ongelmal-
lista.

Vaikka mallin kiytté on suoraviivaista, ei mallin muodostaminen ole yhtéd helppoa.
Mikéli toimintapisteet tunnetaan etukiteen, voidaan jokaiseen toimintapisteeseen
sopiva malli kouluttaa erikseen, jolloin ldhestytdan hallittavissa olevia perinteisid
koneoppimisongelmia. Sama pétee my6s toisin pédin: Mikéli jokaiseen sopivat mal-
lit tunnetaan, voidaan valikointi toteuttaa yksinkertaisesti kokeilemalla. Tilanne on
huomattavasti monimutkaisempi, mikéli sekii mallit etta toimintapisteet ovat tunte-
mattomia.

Téassa kandidaatintyOssa tutustutaan toimintapisteiden hyodyntédmiseen seka erilai-
siin menetelmiin, jotka mahdollistavat tuntemattomien toimintapisteiden ja niita



vastaavien mallien kouluttamisen kiyttiden saatua aineistoa. Tutkielmassa pyritdan
havainnollistamaan aivoissa tapahtuvan oppimisen merkitys, sekd kuvaamaan algo-
ritmien sovelluskohteita. Tyossa késitellddn laajemmin ainoastaan koneoppimisme-
netelmid, joilla on suora yhteys toimintapisteiden estimointiin tai kiyttoon.

Tutkielma on jaettu kolmeen késittelylukuun. Ensimmaéiisessa késittelyluvussa tar-
kastellaan tunnettujen toimintapisteiden kayttdmistd sekd niiden kiyttokohteita.
Toisessa kisittelyluvussa tutustutaan muutamaan yleiseen analysointimenetelméén:
paidkomponenttianalyysiin ja kanoniseen korrelaatioanalyysiin. Menetelmien hyodyt
kiayvat ilmi kolmannessa kasittelyluvussa, jossa tutustutaan toimintapisteiden esti-
mointiin. Luvussa tutustutaan muutamaan erilaiseen malliin, joiden valinnassa on
kiinnitetty huomiota mallien tuoreuteen, erilaiseen ja selkeyteen.



Luku 2

Tunnettujen toimintapisteiden
hyodyntaminen

2.1 Sekoitemallit

Sekoitemallit (mixture models) ovat koneoppimismenetelmii, joilla kyetdén analy-
soimaan ja kiyttdmian aineistoa, joka on muodostunut usean eri mallin pohjal-
ta. Téassa luvussa tutkitaan erilaisia sekoitemalleja, jotka kykenevit hy6édyntdm&aan
opittuja toimintapisteitd tavoitellun toiminnan saavuttamiseen.

2.1.1 Asiantuntijain kirjo

Asiantuntijain kirjo (mixture of experts) on tunnettu koneoppimismenetelmé toi-
mintapisteiden kayttoon. Menetelméssé kiytetdan ulostulosignaalia muodostettaes-
sa useita eri asiantuntijoita, jotka voivat tuottaa ulostuloarvonsa milld tahansa ko-
neoppimismenetelmélld. Eri asiantuntijoiden paino signaalia muodostaessa méariy-
tyy erillisen verdjaverkon (gating network) antaman arvon pohjalta. Sekd verdja-
verkko ettd asiantuntijat saavat samat sisddntulosignaalit. Kuvassa 2.1 esitetdin
kaavamaisesti mallin rakenne. [1, sivut 296-299]

Matemaattisesti ulostulosignaali méaraytyy seuraavasti:

H

y(x) =) wn(x)gn(x), (2.1)

h=1

jossa x kuvaa sisddntulovektoria, y kuvaa ulostulovektoria , g, kunkin asiantunti-
jan painoa ja wy kunkin asiantuntijan antamaa arvoa. Mikili asiantuntijafunktiot
wy, ja verdjiaverkkofunktio g, ovat tiedossa, on ulostuloarvon laskeminen hyvin suo-
raviivaista: sisddntulovektorilla lasketaan x funktioiden g,(x) ja wy(x) arvot, jonka
jalkeen arvot sijoitetaan suoraan kaavaan 2.1. On syytd huomata, ettd funktiot g (x)
ja wy(x) voivat tuottaa ulostuloarvonsa milla tahansa menetelmalla.
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Kuva 2.1: Asiantuntijain kirjo -menetelmén kaavamainen rakenne. Seké kaikki asiantun-
tijat, ettd verdjaverkko saavat samat sisddntuloarvot. Verdjaverkon ulostulos-
arvo madrdd asiantuntijoiden painoarvot. [1, kuva 12.11, muokattu]

Verdjaverkon ja asiantuntijoiden saadessa samat sisddntulosignaalit voivat asiantun-
tijat toimia joko yhteystyossd tai kilpaillen. Kaytdnnossd toiminta riippuu taysin
wp:n koulutusvaiheessa saamista arvoista. Yhteistyossd toimivat asiantuntijat saa-
vat kaikki suhteellisen paljon painoarvoa ulostuloarvolleen verdjiverkolta. Sen sijaan
kilpaillen toimimaan opetetut asiantuntijat saavat kaiken painoarvon muiden asian-
tuntijoiden jaddessd huomiotta. On syytd huomioida yhteistyOssd toimivien asian-
tuntijoiden olevan huomattavasti haastavampia analysoitavia toimintapisteiden né-
kokulmasta. Mikili asiantuntijat toimivat kilpaillen, toimii jokainen asiantuntijoista
omissa toimintapisteissiédn. [2] [1, sivut 299-300]

2.1.2 Hierarkkinen asiantuntijain kirjo

Hierarkkinen asiantuntijain kirjo (Hierarchical Mixture of Experts) laajentaa edel-
14 esitettyd asiantuntijain kirjoa kidyttdmélla jokaisena asiantuntijana hierarkkisen
asiantuntijain kirjoa. T&ll6in muodostuu rekursiivinen malli, joka sisiltdd aina sy-
vemmalle mentdessd uuden hierarkkisen asiantuntijain kirjon. Kaavamainen kuva
mallista on esitetty kuvassa 2.2.

Vaikka malli onkin rakenteeltaan varsin selked, voidaan sen toimintaa analysoida
usealla eri tavalla. Malli voidaan tulkita laajennettuna padtéspuuna, jossa sisdan-
tulo syotetddn kuhunkin lehteen. Kukin verdjiverkko toimii padtossolmuna, joka
yvhdistdid asiantuntijoidensa ulostulot. Juureen saapunut tieto sisidltdd painotetun
keskiarvon eri lehdiltd saaduista signaaleista. Verrattuna padtospuihin menetelmal-
14 saavutetaan diskreetin arvon asemasta jatkuva lopputulos. [1, sivut 300-301]

Hierarkkinen asiantuntjain kirjo luo toimintapisteiden kannalta kiinnostavan ulottu-
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Kuva 2.2: Hierarkkinen asiantuntijain kirjo. Kukin asiantuntija koostuu omasta kirjos-
taan, mikd tuottaa rekursiivisen rakenteen. [3, muokattu]

vuuden. Ylimmén tason verdjaverkko voi tulkita tilannetta hyvin kokonaisvaltaisesti
antaen méiaradysvallan kokonaan tietylle asiantuntijalle, joka vastaa tilanteeseen par-
haalla mahdollisella tavalla. Tietty asiantuntija taasen tulkitsee tilanteen omasta
nikokulmastaan, ja antaa méadrdysvallan jollekin omalle asiantuntijalleen (tai se-
koittaa asiantuntijoidensa ulostuloja). Tasojen méérd voi olla hyvin suuri, jolloin
aina vain yksityiskohtaisempi toiminta on mahdollista.

Yleistyksid menetelmén kiaytolle on lukuisia. Esimerkkind hierarkisen asiantuntijain
kirjon toiminnasta voi pitdd valintaa siivoamisen ja ruokailun valilli. Ylimmaéan ta-
son verdjaverkko pédttelee toimintapisteen siivoamisen ja ruokailun vililtd. Alem-
man tason verdjiverkot ja asiantuntijat padttavit tarkemman toiminnan valitussa
tilanteessa.

2.1.3 Piilotetut Markovin mallit

Piilotetut Markovin mallit (Hidden Markov Models) tarjoavat keinon sekvensseisté
koostuvan aineiston analysointiin. Téssad luvussa késitelliin menetelmén suoritta-
mista diskreetissd tapauksessa, jossa toimintapisteet ja toimintapisteiden tuottamat
arvot ovat diskreettejd muuttujia.

Malli koostuu mallin ulkopuolelle ndkyvisti ja nikyméattomistd muuttujista. Naky-
mittomat muuttujat madrittavit siirtyméatodennakoisyyksid eri toimintapisteiden
valilla. Nakyvat muuttujat vastaavasti madrittavat todenndakoisyyksia rajatulle maa-
rille eri ulostuloarvoja. Ulostuloarvot riippuvat titen toimintapisteesti ja nikyvien
muuttujien arvoista. Kuvassa 2.3 esitetddn kaavamaisesti toimintapisteen vaihtumi-
nen kolmen toimintapisteen tapauksessa. |4, sivut 610-615]

Kun siirtyméatodennakoisyydet ja eri toimintapisteissa saatavat arvot ja niiden ulos-



Kuva 2.3: Tilasiirtymét piilotetuissa Markovin malleissa. Kuvan neliét kuvaavat eri tiloja,
nuolet siirtymié tiloista toiseen. [4, kuva 13.6]

tulotodennikdisyydet on tiedossa, saadaan ulostuloarvo helposti:

1. Padtetdan aloitustoimintapiste. Ennustetta tehdessa tdmén tulee olla jo etu-
kiateen tiedossa, mutta aloitustoimipiste voidaan myd6s arpoa, mikali ilmiota
halutaan vain mallintaa.

2. Arvotaan painotetusti ulostuloarvo nykyisessi toimintapisteessa.
3. Arvotaan painotetusti uusi toimintapiste.

4. Siirry kohtaan 2. TAté toistetaan kunnes haluttu méaéra askeleita on suoritettu.

Piilotettu Markovin malli soveltuu mainiosti ennustamiseen ja aineiston mallinta-
miseen. Sen sijaan se ei kykene muodostamaan vastaanvanlaista sisdantulo-ulostulo
-ristiviittausta kuin asiantuntijain kirjo -menetelma.

Vaikka perusmuotoinen piilotettu Markovin malli ei tarjoa keinoa tehdi ennustetta
sisddntulevien arvojen vililld, on mallia kehitetty monilla eri tavoin. Kiinnostavana
esimerkkind voidaan pitdd Bengion ja Fransconin esittelemddn menetelméd, syote-
1dhto piilotettu Markovin malli (Input-Output Hidden Markov Model) [5]. Malliin
on lisdtty mahdollisuus antaa sisdéntuloarvoja, jotka vaikuttavat ulostuloarvoihin
ettd mallin toimintapisteeseen. Vaikka mallin toiminta lihenee asiantuntajain kir-
joa, voidaan merkittavana etuna pitdd mallin toimintapisteen riippuvuutta edellises-
td toimintapisteestd. Kuvassa 2.4 esitetddn laajennetun piilotetun Markovin mallin
rakenne.

2.2 Sovelluskohteita ja esimerkkeja

Edellisessd luvussa tehtiin katsaus yleisimpiin koneoppimismenetelmiin, jotka ky-
kenevit hyodyntdméaan opittuja toimintapisteitd. Tassa luvussa tutkitaan joitakin
sovelluksia, joihin menetelmid voidaan soveltaa.
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Kuva 2.4: Rakennekuvio syote-1dhto piilotetusta Markovin mallista. Tunnetut u,, solmut
kuvaavat sisdantulevia arvoja, jotka vaikuttavat toimintapisteeseen z,. Toi-
mintapisteeseen vaikuttaa my0s aiempi toimintapiste z,_1. Havaittaviin ulos-
tuloarvoihin vaikuttavat seké sisdéntulleet arvot w, ettd toimintapiste z,. [4,
kuva 13.18]

2.2.1 Luokittelu

Luokittelu on yksi yleisimmistd koneoppimisen ongelmista. Luokittelussa halutaan
tiettyjen mittausten perusteella paitelld automaattisesti jotakin aineistosta. Esimer-
kiksi kehittyneet roskapostisuodattimet toteuttavat aineistolle testeja, jotka saavat
bindérisen arvon (1 tai 0). Roskapostisuodatin kiyttdd néitd testituloksia méaérit-
tddkseen sihkopostiviestin luokan roskapostin ja toivotun sdhkopostin vililta.

Luokittelu voidaan toteuttaa hyvinkin yksinkertaisilla menetelmilla, mutta moni-
mutkaisissa tehtavissi voi olla tarpeen kiyttiaa asiantuntijain kirjo -menetelméé. Esi-
merkkejd tdméankaltaisesta tilanteesta tuottaa jo yksinkertainen ehto, jossa luokit-
telusdénto (toiminta tietyssd toimintapisteessd) tulee tuottaa jonkin toisen sddnnon
pohjalta (toimintapisteen valinta). On oleellista huomata, ettd yksinkertainen neu-
roverkko epdonnistuu suurella todennékoisyydelld timénkaltaisissa tehtévissa [2].

2.2.2 EEG-kiyran analysointi

Téassa esimerkissa keskitytadn tunnettujen toimintapisteiden kiyttamisen sijaan toi-
mintapisteiden oppimiseen. Tassd yhteydessd ei vield menna syvillisemmin kiytet-
taviin koulutusalgoritmeihin, vaan painopisteend on esitelld yksi toimintapisteajat-
telun sovelluskohde.

Thmisen unirytmi koostuu useista eri univaiheista, joita edustaa eri tietoisuuden ta-
so. Normaali unirytmi liikkuu sujuvasti valvetilasta syvdén uneen ja siitd yha REM-
uneen (Rapid Eye Movement, REM), joten vaiheiden voidaan n&hd& linkittyneen
hyvin vahvasti. Unta on voitu analysoida aivosidhkokdyrian (elektroenkefalografia,
EEG), silmésdhkokdyrén (elektro-okulografia, EOG) ja lihassdhkokiyran (elektro-
myografian, EMG) avulla. Niistd analysointimenetelmistd ensimméinen tuottaa hy-
vin paljon arvokasta informaatiota univaiheesta, silld sen muutoksista ammattilai-
nen kykenee tunnistamaan univaiheen, mistd on hy6tya erityisesti univaikeuksien
tulkinnassa. 6]



Univaiheen vaihtelut voidaan tulkita erilaisina toimintapisteind, joita edustavat mal-
lit tuottavat erilaisen aivosdhkokiyrin. Koska univaiheet ovat vahvasti linkittyneet
toisiinsa, voidaan piilotettua Markovin mallia soveltaa ongelmaan. Menetelmé tun-
nistaa toimintapisteen vaihtelun ohjaamattomasti ilman asiantuntijan apua koulu-
tuksessa. Kuva 2.5 esittdd asiantuntijan ja rakennetun mallin analyysit. |7]
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Kuva 2.5: Aivosihkokdyrdn analysointi piilotetulla Markovin mallilla. Alempi kaavio
nayttad univaiheen asiantuntijan analyysin perusteella, ja ylempi kaavio néyt-
taa koneoppimismenetelmén tulkitseman univaiheen. [7]

2.2.3 Liikkumistyylin mallintaminen

Taylor ja Hinton esittidvit hyvin poikkeuksellisen sovelluksen toimintapisteiden kéy-
tolle mallintamalla ihmisen liikkumistyyleja. Sovelluksessa koulutetaan verajoity, te-
kijoity, ehdollinen rajoitettu Bolzmannin kone aineistolla, joka sisdltida erilaisia ka-
velytyyleji, joista kukin kivelytyyli kuvaa yhté toimintapistettd. Koulutetun mallin
avulla saadaan kehitettyd sopivilla parametreilla alkuperdistd liikkumistyylid vas-
taava lopputulos lihes kaikissa tapauksissa. [8|

2.3 Toimintapisteiden havaitseminen aivoissa - esi-
merkkeja

Arkipéivdinen ihmisen toiminta viestii aivojen sekéd kykenevin tunnistamaan toi-
mintapisteen ettd oppimaan toimintapistettd vastaavan mallin samanaikaisesti. Ai-
vot pystyvéit selvittdmadn ongelmia maailmassa, joka sisdltdd tuhansia erilaisia toi-
mintapisteitd kiyttamalld jatkuvasti samaa rajapintaa, elimistodmme. On siis taysin



selvad, ettd aivot kykenevit valitsemaan saatujen drsykkeiden pohjalta sopivan toi-
mintapisteen ja kdyttdytyvin asianmukaisesti. Voidaankin siis padtelld aivojen ky-
kenevin hyodyntdméin opittuja toimintapisteitd. On kuitenkin huomattava, ettei
malleja tai toimintapisteitéd ole koodattu vastasyntyneen aivoihin, minké seuraukse-
na aivoissa voidaan olettaa olevan oppimismekanismi, jonka avulla toimintapisteet
voidaan loytaa.

Téassé luvussa tutustutaan aivoalueisiin, joissa tiedetddn tapahtuvan toimintapistei-
den hyodyntédmisti ja oppimista. Luvussa esitelldéin aivoissa esiintyvidd toimintaa
meneméttd oppimismekanismin yksityiskohtiin.

2.3.1 Hippokampuksen yhdistivi koodaus

Vauriot hippokampuksessa ovat antaneet viitteitd kyvystd muodostaa episodinen
muisti, joka tallentaa eri aivoalueiden tilan ja tilamuutokset tietylld aikahetkellé.
Muisteltaessa jotakin tapahtumaa hippokampus toistaa koetun tilan aktivoimalla
aivoalueita. [9]

Vaikka ajatus onkin teoriassa hyvin yksinkertainen, sisiltdé se useita ongelmia. Mi-
kéli vain nykyinen subjektiivinen tilanne tulee tallettaa muistiin, onnistuu se edella
kuvatulla menetelmalld. Mikali tilanne sisdltdd relaatioita useamman tekijan valilla,
ei niitd kuitenkaan pystytd selvittdmaéain yhtd helposti. Mikali Mika on esimerkiksi
lainannut kirjaansa Heikille, ei pelkkd sanojen "Mika”, “kirja” ja "Heikki’ tallenta-
minen muistiin riitd kuvaamaan tilannetta tiydellisesti. Taméa on kuitenkin selvi-
tettdvissd rooliin sitomisella (role binding). Tdménkaltainen sitominen edellyttia
hippokampukselta yhdistéviaa koodaamista (conjunctive coding). [10]

Vaikka esimerkki onkin hyvin kidytdnnonldheinen, se kuvaa hyvin milld tavoin toi-
mintapisteet ndkyviat hippokampuksessa. Kun puhutaan kirjan lainaamisesta, on
tiedossa valittomésti toimintapiste, joka kuvaa lainaustapahtumaa. Jos Mika oli-
si varastanut kirjan Heikiltd, olisi tilanne tallettunut hippokampukseen eri tavoin,
jolloin my®s toimintapiste olisi ollut erilainen.

2.3.2 Hippokampuksen paikka-, padansuunta- ja hilasolut toi-
mintapisteen maariajina

Hippokampuksen tiedetdén osallistuvan myos suuntavaistoon. Hippokampus sisil-
taa paikkasoluja (place cells), jotka ovat aktiivisia elion ajatellessa tiettyd paikkaa
tai elion ollessa tietyssa paikassa. Rottia tutkittaessa on voitu 16ytad hyvin tarkasti
rotan sijainti labyrintissa tutkimalla paikkasolujen aktivaatiota. [11] Toimintapiste-
tulkinta néille soluille on varsin selkeé. Solujen aktivaatio ilmaisee muille aivoalueille
tietyn elion sijainnin. Hippokampus toimii siis tdssé mallissa verdjaverkkona.

Hippokampus siséltda toisen solupopulaation, jonka solut ovat aktiivisia vain tietyssé
tilanteessa. Rotilla tehdyt kokeet osoittavat, ettd hippokampus siséltaé soluja, jotka
ovat vahvasti riippuvaisia ainoastaan paan suunnasta. Nama paansuuntasolut (head
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direction cells) ovat tulkittavissa myos toimintapisteen méiraijiné, jotka ilmaisevat
muille aivoalueille nykyisen katselusuunnan. [12]

Edellisia solupopulaatioita mutkikkaampia ovat hilasolut (grid cells). Kuten paikka-
solujen aktivaatio, myds hilasolujen aktivaatio on riippuvaista elion sijainnista. Hila-
solut eivit kuitenkaan ole aktiivisia vain yhdessa paikassa, vaan solujen muodostama
yvhteinen aktivaatiokuvio ilmaisee eliolle sen nykyisen sijainnin. Tutkimukset osoit-
tavat samanaikaisesti aktivoituvien solujen aktivoituvan joka kerta samalla tavoin,
joten hilasolujen aktivaatiota voidaan pitdd paikkasoluja vastaavana mekanismina
elion paikan ilmaisemisessa. Rotilla tehdyt tutkimukset osoittavat kahden identti-
sen paikan tuottavan erilaisen vastineen, mikéli rotta itse kulkee paikkojen vililla
tiedostaen siirtymisensd. Kuitenkin merkittavid péaallekkdisyyksid esiintyy aktivoi-
tuvissa soluissa. Kuvassa 2.6 esitetdin hilasolujen aktivaatiota rotalla sen kulkiessa
kahden identtisen huoneen valilld. [13]

Hilasolujen toimintapistetulkinta on vastaava kuin paikkasolujen. Kun hippokam-
puksen hilasoluissa esiintyy tietty kuvio, saavat muut aivoalueet tiedon nykyisesté
sijainnista. Sijaintitieto taasen vaikuttaa oleellisesti elion toimintapisteeseen.

2.3.3 Aivokuori - Biasoidun kilpailun malli

Aivokuorella esiintyy useita ilmioité, jotka viittaavat toimintapisteiden olemassao-
loon. Selkeimpénd esimerkkind voidaan pitda valikoivaa tarkkaavaisuutta. Arkipii-
viiset kokemukset viittaavat siihen, ettd huomion kiinnittyessé johonkin asiaan suo-
datetaan automaattisesti epéaoleellisia drsykkeita.

Tarkkaa selitystd ilmiclle ei kirjoitushetkelld tunneta. Tutkimukset nikoéaivokuo-
ren V4-alueella viittaavat aivojen kykenevin valikoimaan drsykkeitd keskittymisen
mukaan [14]. My6s keskittymiskyvyn on ehdotettu aiheutuvan samanlaisen ilmién
kautta [15]. Molemmissa tapauksissa on sovellettu biasoidun kilpailun mallia.

Biasoidun kilpailun mallissa alhaalta-ylospéin -vaikutukset (bottom-up) aktivoivat
biasoinnin, joka nikyy ylhiiltd-alas -vaikutuksena (top-down) vaimentaen epéoleel-
lisia drsykkeitd. Mallilla voidaan selittda useita aivoissa tapahtuvia ilmiéitd. Mallin
pohjalta tuotetut ndkoaivokuoren simulaatiot tuottavat hyvin realistisen lopputu-
loksen [16]. On syyta havaita biasoidun kilpailun mallin olevan hyvin analoginen
toimintapisteajattelun kanssa. Ylemmén tason biasointi méarda alemmille tasoille
toimintapisteen.

Nakoaivokuoren Vl1-alueelle annetulla drsykkeelld voidaan tuottaa nédkokenttddn
staattinen fosfeeni (n&koaistimus ilman valonldhdetté). V5-alueella tuotetun drsyk-
keen tiedetddn vaikuttavan fosfeenin liitkkumiseen nékokentéssi. Téten voidaan paa-
telld V5-alueen ilmaisevan toimintapisteen (nykyisen liikkumissuunnan) V1-alueelle,
minké ansiosta tietoisesti havaittu kokemus on yhtenéinen. [17]

On syyta havaita toimintapisteajattelun olevan kerrostettavissa, jolloin toimintapis-
teet muodostavat hierarkkisen rakenteen. Esimerkiksi ruokaillessa hierarkian ylin ta-
so mairiaa alemmille tasoille toimintapisteen. Jokin alemmista tasoista vastaa kar-



Kuva 2.6: Hilasolujen aktivaatio. Kuvassa nékyy 25 hilasolun aktivaatio rotan kulkiessa
kahdessa identtisessd huoneessa ja niitéd yhdistévassa kaytivissa. Koe oli jaettu
kahteen osioon, jonka puolivilissé identtisten laatikoiden paikkaa vaihdettiin.
Vasemmalla nytetdin aktivaatiot kokeen ensimmaiseltd puoliskolta, ja oikeal-
la néytetddn aktivaatiot kokeen jalkimmaiselld puoliskolla. Harmaalla esitetyt
pisteet kuvaavat rotan sijaintia ja kulkua labyrintissd ilman solun aktivaatiota.
Mustalla esitetty kuvaa solun aktivaatiota kyseisessé sijainnissa. [13]

kealla tasolla toiminnasta ("leikkaan ruokaa, siirrin ruokaa suuhun”) jonkin vield
alemman tason vastatessa tarkemmasta toiminnasta (“liikutan veistd, liikutan két-
t&”). Naméikin tasot ovat jaettavissa useisiin alatasoihin.



Luku 3

Ohjaamattoman oppimisen

tilastollisia menetelmia

Téassé luvussa tutustutaan menetelmiin, jotka ovat vilttaméattomié luvussa 4 esitet-
tdvien menetelmien ymmartamisessa. Luvussa esitelldadn kaksi tunnettua menetel-
méid: padkomponenttianalyysi (Principal Component Analysis, PCA) ja kanoninen
korrelaatioanalyysi (Canonical Correlation Analysis, CCA). Niist& ensimmiinen on
laajasti kiytossi oleva tekniikka, joka mahdollistaa moniulotteisen aineiston ulottu-
vuuksien vihentamisen. Jialkimmaéinen tekniikka taasen on oiva apuviline pyrkiessa
loytaméadn korreloivia piirteitd kahden eri aineiston vélilla.

Menetelmié esitellessd padpainona on menetelmien perusperiaatteiden ymmértami-
nen. Kanonisen korrelaatioanalyysin osalta esitelldin myos perusmuotoinen iteratii-
vinen menetelmé, joka on pdfdosassa luvussa 4 esitettivissi parannetussa kanonises-
sa korrelaatioanalyysissa.

3.1 Paakomponenttianalyysi

Pdakomponenttianalyysid kidytetdin aineiston ulottuvuuksien pienentdmiseen pyr-
kien menettdmaan mahdollisimman vihan informaatiota. Menetelméssd oletetaan
informaation kuvautuvan aineistossa variaationa. Niin ollen etsimilld aineistosta
sellaiset komponentit, joissa variaatiota on eniten, 16ydetdin myos komponentit,
jotka siséltavit informaatiota eniten. Kun kiytettivid komponentteja lisdtain, saa-
daan lopulta selitettyd kaikki aineiston variaatio. Usein ei kuitenkaan haluta etsid
kuin muutama padkomponentti, joissa informaatiota esiintyy eniten. Kun péikom-
ponentit on l6ydetty, projisoidaan kaikki aineisto néille komponenteille. Taméan jal-
keen ulottuvuuksien méérd vastaa valittujen paikomponenttien médrda. |1, sivut
108-109]

Kaikkien aineiston komponenttien keskindistd variaatiota kuvaa kovarianssimatriisi
(3J). Kovarianssimatriisin ominaisvektorit kuvaavat ominaisarvojen suuruusjirjes-
tyksessid suuntia, joissa variaatiota on eniten. Tall6in aineisto voidaan projisoida

12
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k:hon ulottuvuuteen:
Z=WHX - M), (3.1)

jossa Z kuvaa projisoitua aineistoa, W kuvaa kovarianssimatriisin k:ta suurinta omi-
naisarvoa vastaavaa ominaisvektoria, X aineistoa alkioita ja M aineiston keskiarvoa.
[1, sivut 109-110]

3.2 Kanoninen korrelaatioanalyysi

Kanoninen korrelaatioanalyysi on H. Hotellingin vuonna 1936 kehittdmé menetelma
[18], joka on hyvin kéytetty tilastotieteessé lineaaristen vastaavuuksien 16ytamiseen
[19]. Menetelméssé pyritddn kertomaan aineiston alkiot siten, etté aineistojen vili-
nen korrelaatio olisi mahdollisimman suuri.

Menetelmélle 16ytyy useita kiyttokohteita. Mikili aineistot voidaan vieda lineaari-
kuvauksella samalle suoralle, voidaan aineiston muuttujien vilisten suhteiden olet-
taa olevan tdysin samat. Jos kanonisessa korrelaatiossa paljastuu yksittiisid pis-
teitd, joita ei voida kiertdd samalle suoralle, voidaan muuttujien olettaa kuvaavan
eri asioita. Tétd ominaisuutta voitaisiin kayttad esimerkiksi kahden erilaisen testin
vertailuun. Mikili kiytettdvissa on kaksi rinnakkaista tutkimusmenetelméi, jotka
tuottavat moniulotteista aineistoa, voidaan kanonisella korrelaatioanalyysilld 16ytaa
tutkimusmenetelmien yhtenevyydet. Jos aineisto on kerdtty ajallisesti tai paikal-
lisesti muuttuvista ominaisuuksista, voivat muutokset korreloivuudessa indikoida
muuttunutta toimintapistettd. Tdhan ajatukseen palataan luvussa 4.

3.2.1 Maaritelma

Matemaattisesti kanoninen korrelaatioanalyysi voidaan kuvata seuraavasti [19]:

max cor(ax, by), (3.2)

a,b

missd x ja y kuvaavat vertailtavia aineistoja, a lineaarikuvausta x:lle ja b lineaari-
kuvausta y:lle.

Maéritelmén pohjalta voidaan muodostaa erilaisia tapoja lineaarikuvausten a ja b
ratkaisemiseksi. Muuttujat voidaan ratkaista analyyttisesti kdyttamalla lineaarial-
gebraa [19]. Muuttujat voidaan ratkaista myds iteratiivisesti [18][20].

3.2.2 Iteratiivinen kanoninen korrelaatioanalyysi

Iteratiivista kanonista korrelaatioanalyysia tehdessa projisoidaan vertailtava aineis-
to hypertasolle, joka on muodostettu kiyttden toista vertailtavaa aineistoa. Tama
toistetaan myds toiselle vertailtavalle aineistolle.
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On syytéd havaita, ettd iteratiivinen kanoninen korrelaatioanalyysi voidaan toteuttaa
usealla eri tavalla [18| [20] [21] [22]. Téssd yhteydessd tutustutaan menetelmédn,
jonka paranneltua versiota kisitellddn luvussa 4. Téssd esiteltdvid menetelmé on
kuvattu ldhteen [20] pohjalta.

Seuraavassa esitettivissi iteratiivisen algoritmin yhteenvedossa oletetaan aineiston
koostuvan useasta riippumattomasta ilmentymaéstd, joista kukin ilmentymé sisil-
tda moniulotteisen tuloksen. Kaytinnossi tdmé voisi tarkoittaa kahta erillistd an-
turia (X ja Y), joista molemmat antavat kaksi ulostuloarvoa (kaksi ulottuvuutta).
Useampi riippumaton ilmentymé voidaan kisittda siten, ettd antureiden antamat
ulostuloarvot muuttuvat ajan suhteen. Yhteenvedossa esitettdvissa kaavoissa tdméa
esitetdén funktiona t:n suhteen. On syytd huomata, ettd tdmén seurauksena kaikki
ulostulovektoritkin ovat funktioita ¢:n suhteen.

Menetelmé koostuu neljistd vaiheesta:

1. Keskitys Vertailtavat aineistot keskitetddn. Kdytdnnossa tamé tarkoittaa ai-
neiston kunkin alkion vihentimisti aineiston keskiarvolla:

—~~
w W

2. Valkaisu Aineistot valkaistaan. T&lld operaatiolla tarkoitetaan aineiston kom-
ponenttien variaation pakottamista lukuun 1 ja kovarianssien poistamista. Val-
kaisua voidaan siis pitdd operaationa, jossa molempien aineistojen kovarians-
simatriisi pakotetaan yksikkomatriisiksi.

3. Projektio Téssd vaiheessa ratkaistaan aineiston projektiot a(t) ja b(t). Namé
projektiot kuvaavat aineiston sovittumista hypertasoille, jotka ovat mahdolli-
simman ldhelld toisiaan. On syytd huomioida ensimmaiselld iteraatiokierrok-
sella matriisien Wx ja Wy sisiltivin satunnaisia pienid arvoja. Projektio
tapahtuu yksinkertaisesti:

a(t) = WxX(t) (3.5)
b(t) = Wy Y(t) (3.6)

4. Projektiomatriisien estimointi Kayttadmailla edellisessé vaiheessa saatuja
aineiston projektioita a(t) ja b(t) ratkaistaan uudet matriisit Wx ja Wiy.
On syytd huomata, ettd estimoidessa uutta projektiomatriisia Wx kiytetdan
projektiota b(t) ja vastaavasti Wy :té estimoidessa kiytetaan projektiota a(t).

Projektiomatriisit voidaan estimoida kahdella eri ldhestymistavalla. Ensim-
méisessd tavassa aineistosta ratkaistaan ulottuvuus kerrallaan vektorien a(t)
ja b(t) arvo. Télloin menetelméé toistetaan kunnes kaikkien ulottuvuuksien
a(t) ja b(t) ilmentymit on ratkaistu. Ensimmaiisessd ldhestymistavassa Wx ja
Wy ovat vektoreita (matriisiesityksené 1xn kokoinen matriisi). On syyta havai-
ta vaiheen 3 tuottavan télloin a(t):lle skalaarimuotoisen ulostulon. Soveltaessa
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ensimmaistid ldhestymistapaa tulee kdyttad seuraavia kaavoja estimointiin:

Wx = X(t)" #b(t) (3.7)

Wy => Y1) *a(t) (3.8)

Toisessa lihestymistavassa ratkaistaan kerralla kaikkien ulottuvuuksien a(t) ja
b(t) ilmentymét. Kéytinnossa tdmi on varsin yksinkertainen laajennus edel-
liseen: Wx ja Wy ovat matriiseja, jonka rivit sisdltavit riveilldadn kutakin ai-
neiston ulottuvuutta vastaavan projektiokertoimen. T&lloin vaiheessa kolme
saadaan a(t):std vektori (n x 1 kokoinen matriisi), joka kuvaa kaikkien ulottu-
vuuksien projektioita riveilldén. Soveltaessa toista ldhestymistapaa kiytetddn
estimoinnissa seuraavia kuvauksia:

Wx =Y b(t) = X(t)" (3.9)

Wy = a(t)« Y ()" (3.10)

t

Kahta viimeisti vaihetta toistetaan, kunnes projektiot a(t) ja b(t) eivit endd muutu
merkittavisti. Menetelmi on esitetty kaavamaisesti kuvassa 3.1.
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Projektio Projektio
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Kuva 3.1: Iteratiivinen kanoninen korrelaatioanalyysi. Vertailtavat aineistot keskitetdan
ja valkaistaan. Témé&n jilkeen aineistoja pyritdin projisoimaan toisilleen. Kun
a(t) ja b(t) eivit endd muutu, ilmaisevat ne ldhtoaineistojen arvoja projisoi-
tuna mahdollisimman liheisille hypertasoille. [20, muokattul]



Luku 4

Toimintapisteiden paljastaminen

Luvussa 2 todettiin toimintapisteiden kdyton olevan helppoa. Luvussa esitettiin
my6s muutama esimerkki menetelmien kiytosta, sekd sen merkityksestd aivojen toi-
minnalle. Téssd luvussa esitetdin miten toimintapisteet voidaan tunnistaa ja toi-
mintapisteitd vastaavat mallit kouluttaa. Luvussa kisitelldédn yksinkertaista ratkai-
sua, jossa ihminen méarittad toimintapisteet etukiteen. Luvussa otetaan myos esille
kaksi Boltzmannin koneisiin pohjautuvaa ratkaisumallia, jotka molemmat kykene-
vat paljastamaan toimintapisteet hieman eri toimintaperiaatteilla. Lisdksi luvussa
tutustutaan menetelméiin, joka pyrkii loytadméan aineistosta toimintapisteet suoraan
vhdistelemélld yksinkertaisia tilastollisia menetelmié.

4.1 Manuaalinen toimintapisteiden maarittaminen

Ihmisen todettiin kykenevin ratkaisemaan toimintapisteen useissa eri tapauksissa.
Luvun 2.2 kaikki esimerkit, luokittelu, univaiheen seuranta ja liikkumistyylin mal-
lintaminen ovat sopivan alan asiantuntijan ratkaistavissa, joten teoriassa toiminta-
pisteiden méarittdminen on siirrettavissd konepohjaisesta ratkaisemisesta ihmispoh-
jaiseksi.

Maériteltdessa toimintapisteitd manuaalisesti valitaan kiytettéva malli ilmién raken-
teen mukaisesti. Kaikki ilmioon liittyva tieto luonnollisesti on syyta ottaa huomioon
mallia kehitettdessia. Mikali siirtymat eri toimintapisteiden vililla eivit tapahdu yhta
todenndkdisesti, on syytd kiyttdd piilotettua Markovin mallia. Jos toimintapisteet
siirtyvat yhtéd todennikoisesti tilasta toiseen, voi asiantuntijain kirjo -menetelmaé olla
parempi ratkaisu.

4.1.1 Esimerkki: Univaiheen analysointi
Luvussa 2 esitettiin univaiheiden olevan tulkittavissa toimintapisteind. Samassa

vhteydessi esitettiin miten toimintapisteajattelua kyettiin hyodyntdmé&in univai-
heita analysoidessa. Vaikka esitelty malli pohjautuikin aineistoldhtdiseen toimin-
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tapisteiden etsintdan, voidaan toimintapisteajattelua soveltaa myds manuaalisen
toimintapiste-etsinnén yhteydessi. On syytd huomata, ettd tdmé esimerkki on tay-
sin teoreettinen, eikd téssd esimerkissd mennd tarkemmin matemaattisiin yksityis-
kohtiin. Esimerkin tavoitteena on selventdd univaiheen analysoinnin olevan toteu-
tettavissa automatisoidusti asiantuntijan opetettua tietokonemallin.

Univaiheen analysointi voidaan toteuttaa manuaalisesti piilotetulla Markovin mallil-
la, jossa kukin univaihe muodostaa yhden toimintapisteen. Kutakin toimintapistetta
taasen vastaa malli, joka tuottaa vain tietynlaista aineistoa. Asiantuntijan tehtéivé
on maarita todennikoisyydet, joilla toimintapiste (univaihe) vaihtuu toiseksi. Kun-
kin eri univaiheen malli voidaan kouluttaa yksitellen kiyttdmalld referenssiaineistoa,
joka voi olla yksinkertaisesti EEG-kiyrd yon ajalta. Asiantuntija erittelee referens-
siaineistosta univaiheet, jonka jélkeen eriteltyid aineistoa kiytetddn kouluttamaan
kutakin univaihetta vastaava malli.

Teoriassa edelld esitetty malli voisi tuottaa jéarkevan univaiheita simuloivan EEG-
kiyrdn. Kiinnostuksen kohde on kuitenkin kiyttdéd saatua tietoa univaiheen tunnis-
tamiseen aineiston tuottamisen sijaan. Mallin kddntdminen vastakkaiseksi on kui-
tenkin mahdollista toimintapisteiden ja niiden valisten suhteiden ollessa tiedossa.

Ensimmaéinen toimintapisteen méirittdminen joudutaan tekem#dn vain uuden ai-
neiston ja mallien pohjalta. Mitad lihempénd aineisto on jotakin mallia, sitd toden-
nakoisemmin aineisto on generoitunut mallin kuvaamassa toimintapisteessa. Tamén
jilkeen toimintapisteen ei odoteta muuttuneen ennen kuin aineiston arvot eivit ole
endd riittavin todennakoisesti mallin tuottamia. Uutta oletettua toimintapistetta ar-
vioitaessa tarkastellaan siirtymétodennnékoisyyksid, seki todennakoisyyksid, joilla
aineisto olisi tuotettu jossakin toimintapisteessé. Voidaan siis todeta, ettd piilotetun
Markovin mallin parametrit ovat teoriassa riittivid estimoitaessa univaihetta.

4.1.2 Esimerkki: Luokittelu

Manuaalinen toimintapisteen méérittdminen voi tulla kysymykseen luokittelussa.
Mikéli luokittelijan tulee toteuttaa luokittelua useissa merkittéivisti erilaissa tilan-
teissa, perinteiset yksinkertaiset neuroverkkoratkaisut eiviat todennakoisesti tuota
toivottua tulosta [2], jolloin on tarpeen kiyttdi asiantuntijain kirjo -menetelmié
apuna.

Otetaan esimerkiksi yksinkertainen tilanne, jossa esineitd luokitellaan kahteen eri
huoneeseen riippuen esineen viristd. Esineen muut ominaisuudet maaraavit esineen
sijainnin huoneessa. Esineiden toivotut sijainnit eivit kuitenkaan ole samat eri huo-
neissa, vaan kummallakin huoneella on omanlainen jarjestyksensa.

Tasséd yksinkertaisessa luokittelusovelluksessa on perusteltua kiyttda asiantuntijain
kirjo -menetelméaé. Eri huoneet muodostavat oman toimintapisteensi, joissa esinei-
den sijoittelusddnndt ovat erilaiset.
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4.2 Verajoity ehdollinen rajoitettu Boltzmannin ko-
ne

Ver#joity ehdollinen rajoitettu Boltzmannin kone (Gated Conditional Restricted
Boltzmann Machine, Gated CRBM) kehitettiin alun perin ohjaamattomaan kuvan
muutosten oppimiseen ja mallintamiseen. Menetelmaélle annetaan alkuperiinen ja
muuttunut kuva. Menetelmé tunnistaa miltd osin kuva on muuttunut, jonka jalkeen
menetelmé kykenee hyodyntdméain oppimaansa tuottaakseen vastaavan muunnok-
sen uudelle kuvalle. Muutokset voivat sisidltdd esimerkiksi liitkkumista, suodattamis-
ta tai jonkin muun merkittdvin muutoksen. Vaikka esimerkkien yhteydessd puhu-
taankin kuvista, on syyta huomata menetelmén toimivan mill& tahansa aineistolla.

23]

Erityisen kiinnostavaksi menetelmin tekee sen laajennettavuus. Rajoitetut Boltz-
mannin koneet ovat syvien uskomusverkkojen (Deep Belief Nets) perusrakenneosia.
Niita kdyttamélla piilotetut neuronit toimivat sisdantuloina uusille piilotetuille neu-
roneille. Kouluttaminen voidaan suorittaa jo koulutettujen neuronien paalle, jolloin
saavutetaan uusia ylempid toimintapisteen tunnistavia tasoja. Téssa luvussa ei hyo-
dynnetd tdtd mahdollisuutta, mutta on syytd laittaa merkille menetelmén laajen-
nettavuus. Luvussa 4.3 palataan ajatukseen kayttdmalla toista Boltzmannin koneen
muunnelmaa. [24, s. 634] [23]

4.2.1 Toimintaperiaate

Tarkastellaan ensin verdjoityd Boltzmannin konetta, joka on jo opetettu toimimaan
halutusti. Verdjoity Boltzmannin kone koostuu kolmesta omasta tasostaan: sisddn-
tuloneuronit, joiden arvot riippuvat syotettivisti aineistosta; piilotetut neuronit,
joiden arvot riippuvat sisddntuloneuronien arvoista ja ulostuloneuroneista, joiden
arvot riippuvat sisddntuloneuroneista ja piilotetuista neuroneista. On syytd huoma-
ta, ettd piilotettujen neuronien arvot ovat bin&érisia (voivat saada vain arvot 0 tai
1), kun taas sisddntuloneuronien ja ulostuloneuronien arvot ovat jatkuvia. Kuvassa
4.1 esitetddn mallin arkkitehtuuri.

Perusperiaate on minimoida energiafunktio E, jonka arvot riippuvat annetusta ai-
neistosta, sekd neuronien vélisistd painoista, jotka madraytyvit opetuksen pohjalta.
Opetukseen tai sisddntulevien neuronien tilaan ei voida koskea, joten etsittiessé
minimié tulee ulostuloneuronien tila maarittdd sopivasti. Kaikkien arvojen ollessa
binddrisid energiafunktio £ maardytyy seuraavasti [23|:

E(y,hix) =Y Wigzgihe — Y Wityihe =Y WYy =Y Wlhy,  (4.1)
7 P

ijk ik

jossa x kuvaa kaikkien sisddntuloneuronien joukkoa, h kaikkien piilotettujen neuro-
nien joukkoa, y ulostulovektorien joukkoa ja W eri neuronien vilisid painoja. Vaik-
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(a) (b)
h

Kuva 4.1: Verdjoidyn ehdollisen rajoitetun Boltzmannin koneen arkkitehtuuri. Vasem-
malla esitetdsin Boltzmannin koneen kiyttod verdjoityna regressiona, jossa ku-
kin piilotettu neuroni muuttaa hieman ulostulevan kuvan rakennetta. Oikealla
esitetddn sama malli siten, ettd sisdantulevat yksikot toimivat verédjaverkkona,
jotka maardavat miten paljon kukin piilotettu neuroni saa vaikuttaa kuvaan.
23]

ka minimointiongelma vaikuttaakin suhteellisen yksinkertaiselta, ei ongelma ole rat-
kaistavissa analyyttisilla tyokaluilla. Tamén takia joudutaan turvautumaan iteratii-
viseen algoritmiin, joka pyrkii 16ytdméaan lokaalin minimin energiafunktiosta. T&ta
algoritmia kutsutaan Gibbs-otannaksi. [24]

Gibbs-otannassa oletetaan kullakin neuronilla olevan tietty todennékoisyysjakauma,
jonka mukaisesti sen aktivaatio toteutuu. Gibbs-otannan alkutilassa kunkin neuronin
oletetaan olevan passiivinen. Kukin muutettavissa oleva neuroni kiiydadn luonnolli-
sessa jarjestyksessé lapi, jolloin lasketaan todennékoisyys, jolla neuroni olisi aktiivi-
nen olettaen sen hetkisen tilan olevan pysyvé (piilotetulle neuronille p(hy = 1]x,y)
ja ulostuloneuronille p(y; = 1|x,h)). Téta toistetaan kunnes neuronien tilat ovat
konvergoituneet. [24]

Mikali oletetaan neuronien tilojen olevan vain bindarisid, saadaan seuraavat yhdis-
telmitodennékoisyydet tai paivityssadnnot [23]:
1
1+ exp(— Zij Wijkziy;)
1
1+ exp(= 324, Wigrwihy,)”

p(h, = 1]x,y) = (4.2)

(4.3)

p(y; = 1|x,h) =

joissa x kuvaa kaikkien sisdfdntuloneuronien joukkoa, h kaikkien piilotettujen neuro-
nien joukkoa, y ulostulovektorien joukkoa ja W eri neuronien vélisid painoja.
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On syytd kuitenkin huomata sdédntojen rajoittavan huomattavan paljon kiytetté-
vaa kuva-aineistoa. Olettaessa ulostuloarvojen olevan bindirisid oletetaan samalla
kuvien olevan taysin mustavalkoisia. Tdman takia on syytd muuttaa ulostuloneuro-
nien jakauma normaalijakautuneeksi [23]:

p(y; = 1x,h) = N(y;;v Z ziheWige + WY, 0%), (4.4)

ik

jossa z; kuvaa sisdéntulevaa arvoa, y; kuvaa ulostuloarvoa, h;, piilotetun muuttujan
arvoa, Wi, linkkien painoja ja v varianssia. Téalloin myos energiafunktion muoto
muuttuu:

1 1
Bly hix) = 505 > (5 = W))? = 3 2 Wanaagshe = 3 Withe, - (45)
J

ijk k
jossa muuttujat on maaritetty vastaavasti kuin edella.

On syytd havaita, ettei myoskidn todennédkéisyyksid p(y; = 1|x, h) ja p(hy = 1|x,y)
voida ratkaista analyyttisesti, vaan (Gibbsin nédytteistys on tassikin tapauksessa pa-
kollinen operaatio. [24]

Edelli esiteltiin kahden hyvin tavallisen todennikoisyysjakauman kiyttod. On syyté
havaita, ettd ndmé jakaumat eivit suinkaan ole ainoat vaihtoehdot, vaan ehdolliset
todennikdisyydet voidaan ratkaista mielivaltaisilla jakaumilla. [23]

4.2.2 Kouluttaminen

Koulutettaessa koneoppimismenetelmié kiytetdin usein suurimman uskottavuuden
(Maximum Likelihood, ML) -estimaattia, jossa pyritdian maksimoimaan todennikoi-
syys, ettd annetulla aineistolla malli tuottaisi halutun vasteen. Verajdidyssa Boltz-
mannin koneessa vastaavana maksimoitavana suureena voidaan pitdi keskimadraista
ehdollista logaritmista uskottavuutta [23]:

1
L=~ logp(y” hix"), (4.6)

jossa N kuvaa nidytteiden madrda ja x® ja y® kuvaavat jokaista ndyteparia. Funk-
tion maksimointi voidaan tehdi milla tahansa sopivalla menetelmélld. Maksimointi
voidaan esimerkiksi suorittaa funktion gradienttiin pohjautuvalla menetelmalli, jos-
sa kuljetaan askeleittain funktion suurinta kasvusuuntaa (gradienttia) kohti. Téssé
tapauksessa gradienttifunktioksi saadaan:

aa_v[;f - Z(w)h - Z(%)h,ya (4.7)

« e}

jossa W kuvaa kaikkein linkkien painoja (my6s biasointipainot huomioiden).
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4.2.3 Sovellukset ja kiytto toimintapisteen hakuun

Kuten voidaan olettaa, opitun muutoksen analysointi on myos mahdollista. Aineis-
tosta voidaan esimerkiksi hakea niytteet, joiden valinen muutos on mahdollisimman
pieni. T&lla tavoin on onnistuneesti ryhmitelty luonnollisesti tuotettuja numeroita.
Kokeessa menetelmille annettiin luonnollisesti tuotettu mallinumero, jonka jalkeen
menetelmé kivi aineiston lapi. Menetelmé muodosti annetun néytteen ja kunkin ai-
neistossa olevan néytteen vilille etdisyyssuureen kiyttden vaadittua muutosta etii-
syysmittarina. Kuvassa 4.2 esitetdiin saatuja tuloksia. [23]

Kuva 4.2: Verdjoidyn ehdollisen rajoitetun Boltzmannin koneen kiyttd samanlaisen ku-
van 1oytamisessa. Vasemmassa yldlaidassa on esitetty kuva, jota vastaavia ku-
via on haluttu ldhdeaineistosta 16ytaé. Ylarivin muut viisi kuvaa koostuvat
koneoppimismenetelmén 16ytidmistd parhaista vastaavuuksista kiyttiden muu-
toksen suuruutta mittana. Alempi rivi koostuu euklidisen etaisyyden (kuvien
puhtaan vastaavuden) antamista vastaavuuksista. [23, kuva 11.5]

On merkittavid huomata, ettd menetelmd kykenee havaitsemaan sekd aineiston
kiyttaytymisen toimintapisteissi ettd toimintapisteiden muutokset. Mikili aineiston
niytteet ovat muodostuneet esimerkiksi ajan suhteen, voidaan menetelmalld tunnis-
taa tilanne, jossa opittu ennuste niytteiden muuttumiselle ei padekiddn odotetusti.
Naita yllattavia muutoksia voidaan pitdd toimintapisteen muuttumisen merkkeini.
Toisaalta itse padttelysadnto kuvaa jérjestelmén ominaista toimintaa tietyssd toi-
mintapisteessa.

4.3 Puolirajoitettu Boltzmannin kone ja syvat us-
komusverkot

Téassé luvussa kisittelliin myos yhta Boltzmannin koneen erikoistapausta, puolira-
joitettua Boltzmannin konetta (Semi-restricted Boltzmann Machine, SRBM), joka
tuottaa tiedon toimintapisteen muuttumisesta varsin erilaisella menetelmalld ver-
rattuna edellisessd luvussa esiteltyyn erikoistapaukseen. Edellisessa luvussa todettiin
rajoitettujen Boltzmannin koneiden olevan syvien uskomusverkjojen perusrakenneo-
sia. Téssd luvussa edetddn puolirajoitettuun Boltzmannin koneeseen, jota voidaan
vastaavasti kdyttda syvan uskomusverkon rakenneosana. Tatd ominaisuutta hyodyn-
netddn toimintapisteiden tunnistamisessa.

Téasséd luvussa ei tutustuta syvillisesti puolirajoitetun Boltzmannin koneen tai sy-
vien uskomusverkkojen rakenteeseen. MyGskddan ndiden mallien opettamista ei tassé
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yvhteydessa kasitelld. Luvun tavoitteena on antaa vaihtoehtoinen nikemys Boltz-
mannin koneen kiytostd toimintapisteiden etsimiseen. Syvistd uskomusverkoista ja
puolirajoitetusta Boltzmannin koneesta loytyy lisdtietoa ldhteistd [25], [26] ja [27].

4.3.1 Toimintaperiaate

Tutustutaan ensin puolirajoitetun Boltzmannin koneen rakenteeseen. Puolirajoitet-
tu Boltzmannin kone koostuu kahdesta eri neuronipopulaatiosta: nakyvésta ja naky-
mattomastd. Kaikista ndkyvistd neuroneista on suuntaamaton yhteys jokaiseen néa-
kyméattomaidn neuroniin. Lisdksi ndkyvét neuronit on linkitetty toisiinsa, mikd mah-
dollistaa luonnollisemman liukuman kahden vierekkdisen arvon vilille. Tat4 voidaan
havainnollistaa luonnollisella kuvalla, jossa yksittdinen piste voidaan approksimoida
vierekkdisten pikselien perusteella. Kuvassa 4.3 kuvataan puolirajoitetun Boltzman-
nin koneen arkkitehtuuri. [25]

Puolirajoitetun Boltzmannin koneen rakenne voidaan kuvata energiafunktiona |25|:

E(v,h) ==Y bwvi— > bhj— Y vhjwy — Y viviLi, (1.8)
i J

i, i<

jossa v; kuvaa nikyvaéd neuronia, h; piilotettua neuronia, w;; nikyvén ja piilotetun
neuronin vilistd painoa ja L; kahden ndkyvdn neuronin painoa. On syytd huomata
energiafunktion vastaavan hyvin vahvasti rajoitetun Boltzmannin koneen energia-
funktiota. Ainoana erona voidaan pitdd viimeistd termid, mikd yhdistdd alemman
tason neuronit keskendin.

Aineiston rakenteen tunnistamisen kannalta yksittdinen binddriverkko ei kuitenkaan
ole tehokas. Menetelmaé voidaan laajentaa syviksi uskomusverkoksi, jossa piilotet-
tuja tasoja on useita. Menetelméin kouluttaminen tapahtuu kdytdnndssd taysin sa-
moin kuin yksittdisen puolirajoitetun Boltzmannin koneen. Kun alin piilotettu taso
on koulutettu, lisdtddn tason péille uusi piilotettu taso. Téssé yhteydesséi toisiksi
ylimmén tason neuronien vilille lisdtdan yhteydet, jonka jilkeen uusi piilotettu taso
voidaan kouluttaa. Kuvassa 4.3 kuvataan puolirajoitettujen Boltzmannin koneiden
kiyttod syvin uskomuksen verkkojen rakentamisessa. |25]

4.3.2 Sovellukset ja toimintapistetulkinta

Koulutettaessa verkkoa jokainen uusi taso l6ytaé piirteitd alemman tason syotteesté
[25]. Alimmalla piilotetulla tasolla saattaa tapahtua yksinkertaista suodattamista
ylemmaé&n tason huolehtiessa kokonaisuuden jarkevyydesta. Mikali verkolle on kou-
lutettu esimerkiksi mustavalkoisina kuvina kuviot neli6 ja ympyré, saattavat tietyt
ylimmaén tason neuronit ilmaista puhtaasti ndytetyn kuvion muotoa abstraktimmal-
la tasolla.

Syvissa uskomusverkoissa pétee neuronien todenn#kéisyystulkinta, mikéd tekee toi-
mintapisteen paattelysté yksinkertaista. Tunnettaessa nikyvin tason neuronien ak-
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Kuva 4.3: Vasemmalla esitetddn puolirajoitetun Boltzmannin koneen arkkitehtuuri. N&-
kyvét neuronit on linkitetty suuntaamattomasti keskendén ja ndkymaéttomien
neuronien kanssa. Nakyméttomien neuronien vililla ei ole linkkejd. Oikealla esi-
tetddn puolirajoitetuista Boltzmannin koneista rakennetun syvan uskomusever-

kon arkkitehtuuri, jossa vain ylimmaén tason neuronien véililtd puuttuvat linkit.
[26, muokattu]

tivaatiot voidaan ensimmaéisen piilotetun tason neuronien aktivaatiotodennakoisyy-
det laskea. Kun ensimmaisen piilotetun tason neuronien aktivaatiotodennakoisyydet
ovat tunnettuja, voidaan tutkia toisen tason neuronien aktivaatioita. Tata toistetaan
kunnes kaikkien tasojen neuronien aktivaatiotodenndkoéisyydet ovat tiedossa. Ylim-
méin tason aktivoituneet neuronit kuvaavat toimintapisteiti. [25]

Mikéli puolirajoitetuista Boltzmannin koneista muodostuvaa verkkoa halutaan kiyt-
taa (opittujen) kuvioiden tuottamiseen, voidaan tdmékin toteuttaa. Ylimmén tason
neuronien aktiivisuudet arvotaan tai alustetaan halutuiksi. Tadmén jilkeen kahden
ylimmaéan tason vililld suoritetaan Gibbs-otanta, jolla pyritddn loytdmadn kaavassa
4.8 kuvatun energiafunktion minimi. Gibbs-otanta voidaan suorittaa tissid yhtey-
dessé kuitenkin poikkeavasti painottaen niytteistystd vain toiseksi ylimmén tason
neuroneihin. Gibbs-otantaa jatketaan taso kerrallaan alaspéin. Tété voidaan jatkaa
nédkyville tasolle asti, mutta menetelmén ulostuloarvon voi laajentaa reaaliarvoi-
seksi kiyttamalld alimman piilotetun tason aktivointitodennékoisyyttd varsinaisen
aktivaation sijaan. [25]

Kokonaisuudessaan syvian uskomuksen verkot mahdollistavat abstraktiohierarkioi-
den tuottamisen. Alimman tason neuronit oppivat yksittiisid piirteitd ylempien ta-
sojen tunnistaessa kokonaisuuden. Kéédntden ylemmén tason neuronien aktivaatiot
antavat médrdyksid alemman tason neuroneille. Analogioita télle tilanteelle 16ytyy
lukuisia. Yrityksessd johtaja nikee kokonaiskuvan ja parhaimmillaan vaistoaa pro-
jektit, joihin on syytd panostaa. Tdmé nakyy alemmalla tasolla kiskyinéd, minka
seurauksena alempi taso toteuttaa kiskya suhteellisen riippumattomasti ylemmaés-
td tasosta. Tétédkin yksinkertaisemmin ihmismassaa voidaan pyytdi muodostamaan
suorakulmio tai nelio miaraamatta yksittaisten ihmisten sijaintia muodostettavassa
kuviossa.
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4.4 Ulkotulon ja laajennetun kanonisen korrelaatio-
analyysin kiaytto toimintapisteiden estimointiin

Edelliset luvut esittelivit menetelmia, joiden rakenteessa oli varsin suora yhteys toi-
mintapisteisiin. Téassd luvussa tutustutaan erilaiseen menetelméén, jossa lopputulos
ei ole aina aivan yhté selked toimintapistetulkinnaltaan. Menetelmé kuitenkin kyke-
nee paljastamaan aineistosta potentiaalisia toimintapisteitd, sekd muuttujat, jotka
madrittavat toimintapisteen muutoksia. Luvussa esitettavd menetelmé on kehitetty
Aalto-yliopiston teknillisessé korkeakoulussa. Menetelméan on patentoinut ZenRobo-
tics Oy, ja tdmé luku on kirjoitettu ZenRobotics Oy:n patenttihakemuksen pohjalta
[20].

Luvussa edetddn toimintapisteen 16ytamisestd yhdessa erikoistapauksessa useisiin
lisdyksiin, jotka muuttavat menetelmédd merkittévasti. Erikoistapauksessa esitelty
menetelmé on vain harvoin kiyttokelpoinen, mutta se antaa ymmarrettivan kuvan
menetelméista.

4.4.1 Toimintaperiaate

Tarkastellaan aluksi yksinkertaista tilannetta, jossa pyritdan 16ytdmaan mustan pis-
teen liikkumissuunta tutkittaessa kahta harmaataustaista kuvaa (ennen liikkumista
ja liikkumisen jilkeen). Kuvia analysoitaessa voidaan kuvien pikselit muuttaa yk-
sinkertaisesti vektoreiksi, joiden ulottuvuuksien méaira riippuu kuvian leveydesté ja
korkeudesta. On syytd huomata, ettei tissi yhteydessd muodosteta leveys x korkeus
kokoista matriisia vaan vektorin, jonka pituus on leveys x korkeus. Vektorissa yksit-
tiiset alkiot kuvaavat sitd vastaavan pikselin intensiteettis asteikolla 0 (valkoinen)
- 1 (musta). Kuvataan vektoreita x:114 (alkutila) ja y:1ld (lopputila). Otetaan vek-
torien vililla ulkotulo:

z=xy’, (4.9)

jossa muodostunut z kuvaa matriisia, jonka koko on leveys x korkeus x leveys
korkeus. Muodostuneen matriisin koko on siis ilmiomaéisen suuri. Mikali késittel-
tdisiin kuvaa, jonka koko on 10 % 10, saataisiin muodostuneen matriisin alkioiden
méadraksi 10000.

Ulkotulon tulkitseminen on téssé yhteydesséd varsin yksinkertaista. Ulkotuloa otet-
taessa kerrotaan jokaisella x-vektorin alkiolla vektorin y alkiot. Kukin sarake (ja rivi)
kuvaa siten molemmista kuvista muodostunutta yhdistelmaéa tietyn pikselin suhteen.
Mikéli kerrotaan pienelld arvolla (harmaalla pikselilld) suurta arvoa (musta pikseli),
saadaan lopputulokseksi my6s harmaa pikseli. Vastaavasti pienelld arvolla kerrot-
taessa toista pientd arvoa saadaan myds hyvin pienen arvon. Sen sijaan suhteelli-
sen suurella intensiteettiarvolla kertoessa toista suurta intensiteettiarvoa muutokset
ovat vihaisii.

Saatua matriisia voidaan késitelld laajempana aineistona, jonka jokainen sarake ku-
vaa vhtd vektoria. Téstd aineistosta voidaan selvittid padkomponenttianalyysilla
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suurimmat vaihtelun suunnat, jotka kuvaavat pikselin liikkkumista aineistossa. Vas-
taavasti kuin luvussa 4.2 voidaan tatd tietoa kiyttad toimintapisteen madrittami-
seen. Yksittdinen kuvassa tapahtuva muutos kyetdan 16ytamaén, jota hyodyntdmal-
14 voidaan muodostaa ennuste tulevasta kuvasta. Mikéli ennuste ei tdsméaé odotetun
kanssa, on toimintapiste saattanut muuttua.

4.4.2 Menetelmin laajentaminen

Edelld kuvattu menetelma siséltéa useita heikkouksia. Aineistoa varten tehtiin useita
oletuksia, ja jo puolivilissi voitiin havaita kiisiteltdvien alkioiden méaérin kasvavan
suuresti. Tatd varten menetelmé sisdltid useita eri tekniikoita aineiston esikisitte-
lyyn. My6s vaihtoehtoinen tapa késitelld alkioita on olemassa.

Ensimmaéinen laajennus koostuu raaka-aineiston esikésittelystd. Koska tavoitteena
on l6ytda toimintapisteet ja niihin vaikuttavia muuttujia, suodatetaan aineistos-
ta kiinnostavat piirteet esiin. Toinen laajennus sisdltda ulkotulon jalkeen kerrotun
aineiston vaihtoehtoisen kasittelyn muilla ohjaamattoman oppimisen menetelmilla.
Toiseen laajennukseen siséiltyy my6s vaihtoehtoinen tapa edetid ilman ulkotuloa pi-
tden alkioiden méaérin pienempéani. Kolmas laajennos keskittyy aineiston jalkikésit-
telyyn sopivalla tekniikalla. Kuten havaittiin, aineiston laadusta riippuen lisdykset
eivit aina ole valttamattomat, mutta useimmissa tapauksissa niiden kaytto on suo-
siteltavaa.

4.4.3 Alustaminen ja aineiston esikisittely

Esikésittelyn yhteydessa luodaan pohja myohemmaélle aineiston tyostolle. Koska me-
netelméd sovelletaan tilanteissa, joissa halutaan 16ytaa erilaiset toimintapisteet, voi-
daan toimintapisteitd kuvaamattomat yliméaraiset piirteet suodattaa pois. Kuvassa
4.4 esitetddin kaavamaisesti aineiston esikésittely.

5% Poistetaan
— hidas Valkaisu »
komponentti
v Poistetaan Poistetaan
—P hidas > lineaarinen —®| Valkaisu —>
komponentti ennuste

Kuva 4.4: Alustamisen vaiheet. Ensimmaiisessi vaiheessa jarjestelmille syOtettévistéa
komponenteista poistetaan hitaasti muuttuvat piirteet. Seuraavaksi kompo-
nenttien vilinen lineaarinen korrelaatio poistetaan. Viimeisessi vaiheessa si-
sddntulevat komponentit valkaistaan. [20, muokattu]

Jérjestelmaélle syGtettivissd komponenteissa voi esiintyd hitaita piirteitd, jotka muut-
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tavat aineiston keskiarvoa ajan suhteen. Nama hitaat piirteet voidaan 16ytaa kayt-
tamélld hitaiden piirteiden analyysid (Slow Feature Analysis) [28]. Tamén jilkeen
hitaasti muuttuvat piirteet voidaan poistaa syotettavista aineistosta.

Mikéli aineistossa esiintyy joidenkin komponenttien véililla aina lineaarista korre-
laatiota, poistetaan lineaarinen korrelaatio ennen seuraavaa vaihetta. Lineaarinen
korrelaatio itsessddn ei sisdlld informaatiota muuttujien toimintapisteistd. Mikili
korrelaatiossa tapahtuu muutoksia, on informaatio sen sijaan arvokasta; erilainen
korrelaatio saattaa olla ominaista tietyssa toimintapisteessa.

Aineiston komponentit voidaan tdmén jilkeen valkaista. Valkaisu kuvataan mate-
maattisesti operaationa, jossa aineisto kasitelldén siten, ettd sen kovarianssimatriisi
on yksikkomatriisi [28]. Kéytannossi operaatio voidaan tulkita siten, ettd muuttu-
jissa tapahtuvat muutokset ovat samassa asemassa, vaikka reaalimuutos olisi ollut
huomattavan suuri.

Néiden muokkausten jilkeen aineistoon voidaan tarvittaessa lisdtd epélineaarinen
komponentti. Epdlineaarinen komponentti ndkyy yhtend toimintapisteend, joka voi-
daan asettaa alkuarvoksi hakiessa muita toimintapisteitd. Taméan operaation on ha-
vaittu nopeuttavan huomattavasti toimintapisteiden 16ytamista.

4.4.4 Menetelmin 1. ilmentymaé

Menetelmén ensimmadisessd ilmentyméssd pyritddn erottamaan toimintapisteiden
vaihtuminen ja niiden sijainnit annetuista muuttujista. Tadma ilmentymé vastaa hy-
vin pitkélti aikaisemmin esiteltyd menetelmin toimintaperiaatetta yksinkertaisessa
tilanteessa.

Esikésitellyille signaaleille toteutetaan ulkotulo (kaava 4.9). Saadun matriisin kukin
rivi ja sarake sisaltdd koko toisen aineiston kerrottuna yhdelld toisen aineiston ar-
voista. Mikéli aineisto on valkaistu, korostavat vaihtelut toisiaan samassa "mittakaa-
vassa'". Néiden vaihtelujen tunnistaminen voidaan tehdi padkomponenttianalyysilla
kuten aiemmassa esimerkissd. Vaihtelut voidaan toteuttaa my6s tutkimalla lokaalia
varianssia, kiyttdmalld lineaarista hitaiden piirteiden analyysid (Linear Slow Featu-
re Analysis) tai soveltamalla kanonista korrelaatioanalyysia. Kaytettivd menetelméa
riippuu oletetusta muutoksen luonteesta.

Piikit lokaalissa varianssissa indikoivat muutosta toimintapisteessia. Myos selkeésti
erilaiset paikalliset varianssit antavat viitteita erilaisesta toimintapisteestd. Kano-
nisella korrelaatioanalyysilld voidaan etsiii jonkin ulkotulolla saadun aineiston ja
jonkin aineistoon liittyvin muuttujan vélista korrelaatiota.

Menetelmid voi my6s yhdistelld. Padkomponenttianalyysilla 16ydetyille vektoreille
voidaan projisoida aineisto, jonka jilkeen lokaalia varianssia voi tutkia matalaulot-
tuvuuksisessa avaruudessa.
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4.4.5 Menetelmin 2. ilmentymaé

Menetelmén toinen ilmentymé ratkaisee esimerkissé esiintyneen ongelman suures-
sa ulottuvuusmadran kasvussa. Ulkotulon ottamisen sijaan menetelméssd pyritdédn
hakemaan aineistosta muutoksia iteratiivisella menetelmé&lld suoraan projisoimal-
la aineistoja toisilleen. Ilmentymén lopputuloksena saadaan molempia sisddntuloja
vastaavat ulostulot, jotka on pyritty projisoimaan hypertasoille. Hypertasot muotou-
tuvat iteroinnin myd&té siten, ettd niille projisoidut vektorit kuvaavat muuttunutta
toimintapistettd. On syytd havaita tdmén vastaavan huomattavan paljon luvussa 3
esiteltyd kanonista korrelaatioanalyysia. Menetelmén toinen ilmentymé on esitetty
kuvassa 4.5.

Verrattuna tavalliseen kanoniseen korrelaatioanalyysiin vaiheiden 3 ja 4 vélissa rat-
kaistaan paikallinen korrelaatio, joka ilmaisee aineistojen vastinalkioiden valista kor-
relaatiota funktion tietylla arvolla. Paikallinen korrelaatio p on ratkaistavissa, mikéli
aineiston muuttujien paikalliset varianssit ja kovarianssit ovat tunnettuja:

o(t) l?) (4.10)

BNZXONCIO)

jossa c(t) kuvaa aineiston vastinvektorien paikallista kovarianssia, v, vektorin a(t)
paikallista varianssia ja vp(t) vektorin b(t). Kovarianssin ratkaisemista varten ai-
neistojen véliset vastinalkiot kerrotaan keskenddn. Tulossa muodostetun aineiston
paikallinen varianssi kuvaa paikallista kovarianssia. On syytd havaita, ettd otettaes-
sa varianssia yksittdisestd pisteestd saadaan varianssiksi 0, silld yksittdinen aineis-
ton piste ei sisilli vaihtelua. Paikallinen varianssi tulee sen sijaan estimoida. Tama
voidaan tehda esimerkiksi tutkimalla muutoksia ajanhetken ¢ ymparistossid. Tama
voidaan tehdd myos alipdédstdsuodattamalla (Low-Pass Filter, LPF) aineiston ne-
liota. Paikallinen kovarianssi ratkeaa vastaavasti alipddstosuodattamalla keskendin
alkioittain kerrottuja aineistoja.

Kaisiteltdessi kanonista korrelaatioanalyysid oletettiin vertailtavien aineistojen koos-
tuvan ajallisesti tai tilallisesti muuttuvista piirteistd. Tétd indikoitiin kuvaamalla
kaikkia muuttujia funktioina muuttujan ¢ suhteen. Samalla todettiin myos ulostu-
loarvojen olevan funktiomuotoisia. Yhdistdmalld funktiomuotoisuus paikallisen kor-
relaation kanssa saadaan oiva tyokalu eri toimintapisteiden tunnistamiseen; mikali
paikallinen korrelaatio muuttuu jossakin pisteessd merkittavasti, ovat muuttujien
suhteet muuttuneet, mikd viestii mahdollisesta toimintapisteen vaihtumisesta.

Paikallista korrelaatiota kdytetddn lisdksi uusien projektiomatriisien muodostami-
seen kertomalla projisoidut arvot arvoja vastaavilla paikallisilla korrelaatioilla. T4a-
mé voidaan kisittda siten, ettd itseisarvoltaan suuri paikallinen korrelaatio ohjaa
projektiota tiettyyn suuntaan. Vastaavasti itseisarvoltaan pienet lokaalin korrelaa-
tion arvot pienentéavit vastaavien muuttujien merkitystéi jatkossa.
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Kuva 4.5: Toimintapisteiden tunnistaminen iteratiivisella proseduurilla. Vertailtavista ai-
neistoista poistetaan hitaat komponentit, jolloin aineiston keskiarvo pysyy va-
kiona eri néytteiden valilla. Téméan jilkeen suorat lineaariset riippuvuudet
aineistojen vililla poistetaan, minki jilkeen aineisto valkaistaan. Valkaistut
vertailtavat aineistot projisoidaan hypertasolle kertomalla aineisto W14 tai
Wy :lla. Projisoitujen aineistojen vélinen paikallinen korrelaatio ratkaistaan
paikallisen varianssin ja paikallisen kovarianssin avulla (LPF, Low-Pass Fil-
ter, kuvaa alipa#stosuodattamista). Paikallisella korrelaatiolla kerrotaan proji-
soidut aineistot. Kayttdmaélla tulon muodostamaa korjattua aineistoa muodos-
tetaan uudet projektiomatriisit Wx:lla ja Wy . Luvussa 4.4.5 kuvataan mene-
telmé tarkemmin. [20, muokattu]
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Koneoppimisjarjestelma
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ottava
laite
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tulevat
signaalit
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v

Esikasittely

Prosessointi

Kuva 4.6: Koneoppimisjirjestelmé, joka hyodyntad esiteltyd kehittdm&s menetelméd toi-
mintapisteiden tunnistamiseen. Vasemmalla kuvataan sisdidntulevia signaale-
ja, jotka syotetddn koneoppimisjirjestelmaélle. Koneoppimisjéirjestelmén ensim-
maéisessi erotetaan hyviksyttavit arvot kelpaamattomista (kuvassa vaihe otan-
ta). Kelpuutetut arvot esikésitellddn ja késitelldén. Tuotetut arvot tulkitaan
vastaanottavassa laitteessa. Mallinnusmoduulissa muodostetaan vastinesignaa-
li, joka nékyy wvastesignaalina. |20, muokattu]

4.4.6 Jalkikasittely

Aineiston jalkikésittely voi siséltda hyvin erilaisia toimenpiteita. Tavoitteena on saa-
da aineistosta mahdollisimman selkedd ja helposti tulkittavaa. Menetelméssi esi-
tetddn aineiston jalkikdsittelyn koostuvan normalisoinnista, ortogonalisoinnista ja
ulottuvuuksien vihentémisesta.

Niiden lisdksi menetelmad kiytettidessa voidaan useita muitakin operaatioita toteut-
taa. Mikéli menetelmén tulos kuvaa ryhmittynytta aineistoa, voidaan aineiston ryh-
mét erottaa odotuksen maksimointi (Expectation Maximization, EM) tai k-means
-algoritmilla. [1, sivut 135-144]

4.4.7 Koneoppimisnikokulma

Mikéli aineisto sisdltda viitteitd toimintapisteiden lasnaolosta, algoritmi todennikdi-
sesti l0ytdd ne. Sen sijaan menetelmin tulkitseminen saattaa edellyttdd asiantunti-
jaa, mika ei kaikissa tilanteissa ole kuitenkaan hyvi. Tamén takia joitakin valmiita
suunnitelmia menetelmén kiytolle on perinteisten koneoppimismenetelmien kanssa.
Vaikka perinteiset koneoppimismenetelmit yleensd epdonnistuvat toimintapisteiden
madrittdmisessd, saattavat ne soveltua hyvin opitun toimintapisteen hy6dyntdmi-
seen kuten havaittiin luvussa 2. Kuvassa 4.6 esitetdén kaavamainen esimerkki ko-
neoppimisjarjestelmasta.

Esitelty algoritmi saa arvot jostakin ilmidstd. Otanta-vaiheessa poistetaan suoraan
selkedisti epakelvot ndytteet. Téméan vaiheen merkitys korostuu luonnollisen ilmion
ollessa kyseessi, silld anturin antama virheellinen arvo on syyta automaattisesti jat-
tda pois. Aineisto esikisitellddn ja késitelladan luvussa kuvatuilla menetelmilld. Saatu
signaali saattaa sisaltdd tietoa nykyisestd toimintapisteestd tai sen muuttumisesta.
Tama riippuu kiytetystd menetelmayhdistelmésta. Signaali syotetddn sisddntuloar-
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vona seuraavalle kasittelijille, joka muokkaa sen sopivaksi mallinnusmoduulia varten.
Mallinnusmoduuli tuottaa vastesignaalin, joka voi ndkya jarjestelmédn ulkopuolella
esimerkiksi ohjaussignaalina.



Luku 5

Y hteenveto ja pohdinta

Tutkielmassa on nahty toimintapisteisiin pohjautuvan ajattelun voima. Maailman
voidaan ndhda koostuvan erilaisista toimintatiloista, joita on kandidaatintyon aika-
na nimitetty toimintapisteiksi. Intuitiivisesti ongelma ei vaikuta ihmismielelle haas-
tavalta. Ihmismieli kykeneekin 16ytadméan valittomaésti sopivan kiyttaytymisen. Ta-
man ajattelun valjastaminen tietokoneelle on ollut tavoitteena jo pitkdan, mutta
vasta muutaman viime vuoden aikana on otettu merkittavia edistysaskelia. Tyossa
késiteltiin sekd toimintapisteiden kayttoa ettd niiden hakemista koneoppimismene-
telmin.

Luvussa 2 todettiin tunnettujen toimintapisteiden kaytolle olevan tiedossa useita
esimerkkeji. Kirjallisuuden havaittiin myos sisdltavin useita erilaisia kiytdnnon so-
velluksia, jotka edellyttivit toimintatilojen tunnistamista tai kiyttoa ilman ulkoista
asiantuntijaa. Luvussa tutustuttiin muutamaan merkittéviin koneoppimismenetel-
maan, joista kukin omasi erilaiset lahtooletukset ja kdyttokohteet; tdten menetel-
mien paremmuudesta ei voida tehdid suurta analyysid. Asiantuntijain kirjo muun-
nelmineen sallii yksinkertaisen verdjaverkon toimintapisteen méarittdmiseen. Heik-
koutena menetelméa huomioi vain silla hetkelld saadun néytteen tutkimatta edellista
toimintapistettd. Tamén heikkouden korjasi piilotetun Markovin mallin muunnelma,
sisddn-ulos piilotettu Markovin malli, joka kouluttamisen jélkeen vaihtoi toiminta-
pistetta vain tietylld todennikoisyydelld ja silloinkin riippuen sisdantuloarvoista. Li-
siaksi luvussa 2 laitettiin merkille kirjallisuudesta I6ytyneet viitteet hippokampuksen
ja aivokuoren merkityksesté erilaisten toimintatilojen tunnistajina.

Toimintapisteiden tunnistamista ja oppimista kdsiteltiin syvéllisemmin luvussa 4.
Luvussa esiteltiin neljd merkittavaa lahestymistapaa. Ensimméisessa 1dhestymista-
vassa ihmisen osaaminen valjastettiin toimintapisteiden hakuun. T&ll6in ihminen
médritteli erilaiset toimintapisteet, joita voitaisiin hyddyntaé luvussa 2 esitettévilla
menetelmilld. Toisessa ldhestymistavassa kiytettiin Ronald Memisevicin ja Geoffrey
Hintonin kehittamaa verdjoityd ehdollista rajoitettua Boltzmannin konetta aineis-
ton muutosten havaitsemiseen. Menetelmé oli suunniteltu ohjaamattomaan kuvan-
muutosten tunnistamiseen, mutta luvussa havainnollistettiin sen merkitystd myos
toimintapisteiden haussa. Menetelmén todettiin kykenevin havaitsemaan kahden
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tilan valilla esiintyvdt muutokset. Muutokset itsessddn indikoivat toimintapisteel-
le ominaista kiyttdytyimstd, kun taas muutoksissa esiintyvit muutokset indikoivat
toimintapisteen vaihtumista. Kolmas menetelmé oli varsin erilainen suhteessa edel-
liseen. Siind kiytettiin puolirajoitettuja Boltzmannin koneita syvin uskomusverkon
rakenneosina. Syvin uskomusverkon ylimmét neuronit taasen sopivalla koulutuk-
sella saattoivat ilmaista yleiselld tasolla alemman tason mutkikasta toimintaa. Nel-
jds lahestymistapa koostui ZenRobotics Oy:n patentoimasta menetelmikirjosta, jo-
ka kykeni tunnistamaan toimintapisteen vaihtumisen ja tunnistamaan jarjestelméan
kiyttdytymisen toimintapisteessé.

IThmisen padttiessd toimintapisteet pysytdan varsin kaukana varsinaisesta oikeas-
ta toimintapisteiden automaattisesta oppimisesta. Sen sijaan kolme muuta esiteltya
menetelmii kykenevit tunnistamaan muuttuneet toimintapisteet ja toimintapistei-
den jilkeiset kiyttiytymiset aineistoldhtoisesti ilman mitdin ennakkotietoa aineis-
tosta. Menetelmien vililld ei tyon aikana suoritettu varsinaista vertailua, eikd mene-
telmien puolueeton vertailu ole todennédkodisesti mahdollista; menetelméat sisaltavat
paljon muokattavia osia, jotka riippuvat kiyttotarkoituksesta.

Verajoity Boltzmannin kone kykenee havaitsemaan toimintapisteen muuttumisen
reaaliajassa. Mikdli ennuste ei vastaa odotettua riittavésti, on toimintapiste toden-
nikoisesti muuttunut. Talla tavoin kidytettyna verdjoity Boltzmannin kone nojautuu
Gibbs-otantaan, joka on iteratiivinen ja suoritusaikaa vaativa. Valmiin aineistonkin
tapauksessa menetelmén kiytto télla tavoin on hidasta.

Puolirajoitettujen Boltzmannin koneiden ja syvien uskomusverkkojen kiytté mah-
dollistaa hyvin nopean péaéttelyn saaduista arvoista. Paattely voidaan suorittaa ti-
lastollisesti todennékoisyyslaskennan keinoin, miké on suuri etu muihin menetelmiin
nihden. Nopea péittely on kuitenkin mahdollista vain jéirjestelmén kouluttamisen
jalkeen. Téaten padttelya varten jarjestelmélle tulee syottdd laajasti aineistoa kou-
lutusta varten, mikéli padttelyn haluaa tehda etukidteen. Mikili paattelyn haluaa
toteuttaa kerdtylle aineistolle, saadaan parhaimmillaan jarjestelmén eri toiminta-
pisteet esille vain tutkimalla ylintd piilotettua neuronien tasoja.

ZenRobotics Oy:n patentoima menetelmi on varsin kiinnostava poikkeama naista
kahdesta. Menetelméa koostuu useista tunnetuista tilastotieteen menetelmisté, jotka
lopulta paljastavat toimintapisteen muutokset.

Voidaan todeta toimintapisteiden tunnistamisen ja kdyton vaatimien perustyokalu-
jen olevan olemassa. Erityisesti toimintapisteiden tunnistamiseen soveltuvilla mene-
telmilld tuotetut kiytinnon sovellukset ovat vihéisid, mutta tyossé esitellyt esimer-
kit eri kiiyttotapauksista osoittavat menetelmiin pohjautuvan potentiaalin.
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