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Jokainen järjestelmä voidaan jakaa toimintapisteisiin, joissa järjestelmän toi-
minta on erilaista. Järjestelmä ja toimintapisteet voivat olla miltein mitä vain
mielekkäästi hahmotettavia käsitteitä. Autolla ajon voidaan nähdä jakautuvan
toimintapisteisiin �sula tie� ja �liukas tie�: liukkaalla tiellä auton reagointi ohjauk-
seen on merkittävästi erilaista suhteessa reagointiin sulalla tiellä. Ongelma on
ihmiselle intuitiivisesti hyvin helppo ymmärtää, mutta koneoppimisjärjestelmälle
näinkin yksinkertaista toimintapisteiden tunnistamista voidaan pitää ylivoimai-
sena perinteisillä lähestymistavoilla.

Tiedossa on useita erilaisia menetelmiä, jotka mahdollistavat tunnettujen toi-
mintapisteiden käytön ja halutun toiminnan tuottamisen eri toimintapisteissä.
Tutkielmassa kuvataan joitakin näistä menetelmistä ja esimerkkitapauksia niiden
käytöstä. Tässä kandidaatintyössä havaitaan useiden eri aivoalueiden kykenevän
sekä reagoimaan erilaisiin toimintapisteisiin että oppimaan toimintapisteet. Nämä
mekanismit palvelevat muita aivoalueita ilmoittamalla eliön toimintapisteen,
mikä mahdollistaa laajan adaptaation erilaisiin tilanteisiin.

Tutkielmassa esitellään yksinkertaisten toimintapisterajojen manuaalista opetta-
mista koneoppimismenetelmille. Tällä menetelmällä voidaan laajentaa yksinker-
taisissa sovelluksissa koneen toimintaa merkittävästi. Työssä tutustutaan myös
kolmeen erilaiseen koneoppimismenetelmään, jotka kykenevät tunnistamaan au-
tomaattisesti järjestelmän toimintapisteen vaihtumisen ja järjestelmän käyttäyty-
misen eri toimintapisteissä.

Avainsanat: koneoppiminen, ohjaamaton oppiminen, korrelaatiorakenne, Boltz-
mannin kone
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Luku 1

Johdanto

Maailma koostuu toimintatiloista. Jossakin tilanteessa suotuisa toiminta voi olla
toisessa tilanteessa virheellinen. Esimerkiksi autoa ajaessa sääolosuhteet vaikutta-
vat kriittisesti ajotyyliin; liukkaalla ajettaessa auton käyttäytyminen on aivan eri-
laista suhteessa sulaan tiehen, joten lopputulos olisi haitallinen, mikäli ajaja jättäi-
si huomiotta sääolosuhteen määräämän toimintatilan. Näitä erilaisia toimintatiloja
nimitetään toimintapisteiksi.

Monet perinteiset koneoopimismenetelmät olettavat opittavan aineiston muodostu-
neen yhden tietyn toimintapisteen ympäristössä. Useissa tapauksissa mallin rakenne
onkin etukäteen täysin tiedossa, jolloin tarpeellista on ainoastaan mallin paramet-
rien määrittäminen käyttäen saatavilla olevaa aineistoa. Vaikka tämänkaltainen lä-
hestymistapa on mielekäs monissa tapauksissa, voivat lähestymistavan sisältämät
rajoitukset olla joissakin tapauksissa liikaa. Aineisto ei kuitenkaan aina ole muo-
dostunut vain yhdessä toimintapisteessä, eikä toimintapisteiden määrää tai sopivaa
toimintaa etukäteen tunneta. Ihmisresursseja ei mahdollisesti haluta käyttää on-
gelman tarkkaan määrittelyyn. Toimintapisteiden määrittäminen etukäteen voi olla
myös ihmiselle ylivoimaista ongelman luonteen takia.

Tunnettaessa toimintapisteet ja niitä vastaavat mallit voidaan haluttu toiminta saa-
vuttaa käyttämällä asiantuntijain kirjo -menetelmää (mixture of experts). Menetel-
mä tunnistaa toimintapisteen ja antaa sitä vastaavan mallin muodostaa toiminnan.
Täten voidaan todeta, että mallin ollessa tiedossa sen käyttäminen ei ole ongelmal-
lista.

Vaikka mallin käyttö on suoraviivaista, ei mallin muodostaminen ole yhtä helppoa.
Mikäli toimintapisteet tunnetaan etukäteen, voidaan jokaiseen toimintapisteeseen
sopiva malli kouluttaa erikseen, jolloin lähestytään hallittavissa olevia perinteisiä
koneoppimisongelmia. Sama pätee myös toisin päin: Mikäli jokaiseen sopivat mal-
lit tunnetaan, voidaan valikointi toteuttaa yksinkertaisesti kokeilemalla. Tilanne on
huomattavasti monimutkaisempi, mikäli sekä mallit että toimintapisteet ovat tunte-
mattomia.

Tässä kandidaatintyössä tutustutaan toimintapisteiden hyödyntämiseen sekä erilai-
siin menetelmiin, jotka mahdollistavat tuntemattomien toimintapisteiden ja niitä
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vastaavien mallien kouluttamisen käyttäen saatua aineistoa. Tutkielmassa pyritään
havainnollistamaan aivoissa tapahtuvan oppimisen merkitys, sekä kuvaamaan algo-
ritmien sovelluskohteita. Työssä käsitellään laajemmin ainoastaan koneoppimisme-
netelmiä, joilla on suora yhteys toimintapisteiden estimointiin tai käyttöön.

Tutkielma on jaettu kolmeen käsittelylukuun. Ensimmäisessä käsittelyluvussa tar-
kastellaan tunnettujen toimintapisteiden käyttämistä sekä niiden käyttökohteita.
Toisessa käsittelyluvussa tutustutaan muutamaan yleiseen analysointimenetelmään:
pääkomponenttianalyysiin ja kanoniseen korrelaatioanalyysiin. Menetelmien hyödyt
käyvät ilmi kolmannessa käsittelyluvussa, jossa tutustutaan toimintapisteiden esti-
mointiin. Luvussa tutustutaan muutamaan erilaiseen malliin, joiden valinnassa on
kiinnitetty huomiota mallien tuoreuteen, erilaiseen ja selkeyteen.



Luku 2

Tunnettujen toimintapisteiden

hyödyntäminen

2.1 Sekoitemallit

Sekoitemallit (mixture models) ovat koneoppimismenetelmiä, joilla kyetään analy-
soimaan ja käyttämään aineistoa, joka on muodostunut usean eri mallin pohjal-
ta. Tässä luvussa tutkitaan erilaisia sekoitemalleja, jotka kykenevät hyödyntämään
opittuja toimintapisteitä tavoitellun toiminnan saavuttamiseen.

2.1.1 Asiantuntijain kirjo

Asiantuntijain kirjo (mixture of experts) on tunnettu koneoppimismenetelmä toi-
mintapisteiden käyttöön. Menetelmässä käytetään ulostulosignaalia muodostettaes-
sa useita eri asiantuntijoita, jotka voivat tuottaa ulostuloarvonsa millä tahansa ko-
neoppimismenetelmällä. Eri asiantuntijoiden paino signaalia muodostaessa määräy-
tyy erillisen veräjäverkon (gating network) antaman arvon pohjalta. Sekä veräjä-
verkko että asiantuntijat saavat samat sisääntulosignaalit. Kuvassa 2.1 esitetään
kaavamaisesti mallin rakenne. [1, sivut 296-299]

Matemaattisesti ulostulosignaali määräytyy seuraavasti:

y(x) =
H∑
h=1

wh(x)gh(x), (2.1)

jossa x kuvaa sisääntulovektoria, y kuvaa ulostulovektoria , gh kunkin asiantunti-
jan painoa ja wh kunkin asiantuntijan antamaa arvoa. Mikäli asiantuntijafunktiot
wh ja veräjäverkkofunktio gh ovat tiedossa, on ulostuloarvon laskeminen hyvin suo-
raviivaista: sisääntulovektorilla lasketaan x funktioiden gh(x) ja wh(x) arvot, jonka
jälkeen arvot sijoitetaan suoraan kaavaan 2.1. On syytä huomata, että funktiot gh(x)
ja wh(x) voivat tuottaa ulostuloarvonsa millä tahansa menetelmällä.

3
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Kuva 2.1: Asiantuntijain kirjo -menetelmän kaavamainen rakenne. Sekä kaikki asiantun-
tijat, että veräjäverkko saavat samat sisääntuloarvot. Veräjäverkon ulostulos-
arvo määrää asiantuntijoiden painoarvot. [1, kuva 12.11, muokattu]

Veräjäverkon ja asiantuntijoiden saadessa samat sisääntulosignaalit voivat asiantun-
tijat toimia joko yhteystyössä tai kilpaillen. Käytännössä toiminta riippuu täysin
wh:n koulutusvaiheessa saamista arvoista. Yhteistyössä toimivat asiantuntijat saa-
vat kaikki suhteellisen paljon painoarvoa ulostuloarvolleen veräjäverkolta. Sen sijaan
kilpaillen toimimaan opetetut asiantuntijat saavat kaiken painoarvon muiden asian-
tuntijoiden jäädessä huomiotta. On syytä huomioida yhteistyössä toimivien asian-
tuntijoiden olevan huomattavasti haastavampia analysoitavia toimintapisteiden nä-
kökulmasta. Mikäli asiantuntijat toimivat kilpaillen, toimii jokainen asiantuntijoista
omissa toimintapisteissään. [2] [1, sivut 299-300]

2.1.2 Hierarkkinen asiantuntijain kirjo

Hierarkkinen asiantuntijain kirjo (Hierarchical Mixture of Experts) laajentaa edel-
lä esitettyä asiantuntijain kirjoa käyttämällä jokaisena asiantuntijana hierarkkisen
asiantuntijain kirjoa. Tällöin muodostuu rekursiivinen malli, joka sisältää aina sy-
vemmälle mentäessä uuden hierarkkisen asiantuntijain kirjon. Kaavamainen kuva
mallista on esitetty kuvassa 2.2.

Vaikka malli onkin rakenteeltaan varsin selkeä, voidaan sen toimintaa analysoida
usealla eri tavalla. Malli voidaan tulkita laajennettuna päätöspuuna, jossa sisään-
tulo syötetään kuhunkin lehteen. Kukin veräjäverkko toimii päätössolmuna, joka
yhdistää asiantuntijoidensa ulostulot. Juureen saapunut tieto sisältää painotetun
keskiarvon eri lehdiltä saaduista signaaleista. Verrattuna päätöspuihin menetelmäl-
lä saavutetaan diskreetin arvon asemasta jatkuva lopputulos. [1, sivut 300-301]

Hierarkkinen asiantuntjain kirjo luo toimintapisteiden kannalta kiinnostavan ulottu-
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Kuva 2.2: Hierarkkinen asiantuntijain kirjo. Kukin asiantuntija koostuu omasta kirjos-
taan, mikä tuottaa rekursiivisen rakenteen. [3, muokattu]

vuuden. Ylimmän tason veräjäverkko voi tulkita tilannetta hyvin kokonaisvaltaisesti
antaen määräysvallan kokonaan tietylle asiantuntijalle, joka vastaa tilanteeseen par-
haalla mahdollisella tavalla. Tietty asiantuntija taasen tulkitsee tilanteen omasta
näkökulmastaan, ja antaa määräysvallan jollekin omalle asiantuntijalleen (tai se-
koittaa asiantuntijoidensa ulostuloja). Tasojen määrä voi olla hyvin suuri, jolloin
aina vain yksityiskohtaisempi toiminta on mahdollista.

Yleistyksiä menetelmän käytölle on lukuisia. Esimerkkinä hierarkisen asiantuntijain
kirjon toiminnasta voi pitää valintaa siivoamisen ja ruokailun välillä. Ylimmän ta-
son veräjäverkko päättelee toimintapisteen siivoamisen ja ruokailun väliltä. Alem-
man tason veräjäverkot ja asiantuntijat päättävät tarkemman toiminnan valitussa
tilanteessa.

2.1.3 Piilotetut Markovin mallit

Piilotetut Markovin mallit (Hidden Markov Models) tarjoavat keinon sekvensseistä
koostuvan aineiston analysointiin. Tässä luvussa käsitellään menetelmän suoritta-
mista diskreetissä tapauksessa, jossa toimintapisteet ja toimintapisteiden tuottamat
arvot ovat diskreettejä muuttujia.

Malli koostuu mallin ulkopuolelle näkyvistä ja näkymättömistä muuttujista. Näky-
mättömät muuttujat määrittävät siirtymätodennäköisyyksiä eri toimintapisteiden
välillä. Näkyvät muuttujat vastaavasti määrittävät todennäköisyyksiä rajatulle mää-
rälle eri ulostuloarvoja. Ulostuloarvot riippuvat täten toimintapisteestä ja näkyvien
muuttujien arvoista. Kuvassa 2.3 esitetään kaavamaisesti toimintapisteen vaihtumi-
nen kolmen toimintapisteen tapauksessa. [4, sivut 610-615]

Kun siirtymätodennäköisyydet ja eri toimintapisteissä saatavat arvot ja niiden ulos-



6

Kuva 2.3: Tilasiirtymät piilotetuissa Markovin malleissa. Kuvan neliöt kuvaavat eri tiloja,
nuolet siirtymiä tiloista toiseen. [4, kuva 13.6]

tulotodennäköisyydet on tiedossa, saadaan ulostuloarvo helposti:

1. Päätetään aloitustoimintapiste. Ennustetta tehdessä tämän tulee olla jo etu-
käteen tiedossa, mutta aloitustoimipiste voidaan myös arpoa, mikäli ilmiötä
halutaan vain mallintaa.

2. Arvotaan painotetusti ulostuloarvo nykyisessä toimintapisteessä.

3. Arvotaan painotetusti uusi toimintapiste.

4. Siirry kohtaan 2. Tätä toistetaan kunnes haluttu määrä askeleita on suoritettu.

Piilotettu Markovin malli soveltuu mainiosti ennustamiseen ja aineiston mallinta-
miseen. Sen sijaan se ei kykene muodostamaan vastaanvanlaista sisääntulo-ulostulo
-ristiviittausta kuin asiantuntijain kirjo -menetelmä.

Vaikka perusmuotoinen piilotettu Markovin malli ei tarjoa keinoa tehdä ennustetta
sisääntulevien arvojen välillä, on mallia kehitetty monilla eri tavoin. Kiinnostavana
esimerkkinä voidaan pitää Bengion ja Fransconin esittelemään menetelmää, syöte-
lähtö piilotettu Markovin malli (Input-Output Hidden Markov Model) [5]. Malliin
on lisätty mahdollisuus antaa sisääntuloarvoja, jotka vaikuttavat ulostuloarvoihin
että mallin toimintapisteeseen. Vaikka mallin toiminta lähenee asiantuntajain kir-
joa, voidaan merkittävänä etuna pitää mallin toimintapisteen riippuvuutta edellises-
tä toimintapisteestä. Kuvassa 2.4 esitetään laajennetun piilotetun Markovin mallin
rakenne.

2.2 Sovelluskohteita ja esimerkkejä

Edellisessä luvussa tehtiin katsaus yleisimpiin koneoppimismenetelmiin, jotka ky-
kenevät hyödyntämään opittuja toimintapisteitä. Tässä luvussa tutkitaan joitakin
sovelluksia, joihin menetelmiä voidaan soveltaa.
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Kuva 2.4: Rakennekuvio syöte-lähtö piilotetusta Markovin mallista. Tunnetut un solmut
kuvaavat sisääntulevia arvoja, jotka vaikuttavat toimintapisteeseen zn. Toi-
mintapisteeseen vaikuttaa myös aiempi toimintapiste zn−1. Havaittaviin ulos-
tuloarvoihin vaikuttavat sekä sisääntulleet arvot un että toimintapiste zn. [4,
kuva 13.18]

2.2.1 Luokittelu

Luokittelu on yksi yleisimmistä koneoppimisen ongelmista. Luokittelussa halutaan
tiettyjen mittausten perusteella päätellä automaattisesti jotakin aineistosta. Esimer-
kiksi kehittyneet roskapostisuodattimet toteuttavat aineistolle testejä, jotka saavat
binäärisen arvon (1 tai 0). Roskapostisuodatin käyttää näitä testituloksia määrit-
tääkseen sähköpostiviestin luokan roskapostin ja toivotun sähköpostin väliltä.

Luokittelu voidaan toteuttaa hyvinkin yksinkertaisilla menetelmillä, mutta moni-
mutkaisissa tehtävissä voi olla tarpeen käyttää asiantuntijain kirjo -menetelmää. Esi-
merkkejä tämänkaltaisesta tilanteesta tuottaa jo yksinkertainen ehto, jossa luokit-
telusääntö (toiminta tietyssä toimintapisteessä) tulee tuottaa jonkin toisen säännön
pohjalta (toimintapisteen valinta). On oleellista huomata, että yksinkertainen neu-
roverkko epäonnistuu suurella todennäköisyydellä tämänkaltaisissa tehtävissä [2].

2.2.2 EEG-käyrän analysointi

Tässä esimerkissä keskitytään tunnettujen toimintapisteiden käyttämisen sijaan toi-
mintapisteiden oppimiseen. Tässä yhteydessä ei vielä mennä syvällisemmin käytet-
täviin koulutusalgoritmeihin, vaan painopisteenä on esitellä yksi toimintapisteajat-
telun sovelluskohde.

Ihmisen unirytmi koostuu useista eri univaiheista, joita edustaa eri tietoisuuden ta-
so. Normaali unirytmi liikkuu sujuvasti valvetilasta syvään uneen ja siitä yhä REM-
uneen (Rapid Eye Movement, REM), joten vaiheiden voidaan nähdä linkittyneen
hyvin vahvasti. Unta on voitu analysoida aivosähkökäyrän (elektroenkefalogra�a,
EEG), silmäsähkökäyrän (elektro-okulogra�a, EOG) ja lihassähkökäyrän (elektro-
myogra�an, EMG) avulla. Näistä analysointimenetelmistä ensimmäinen tuottaa hy-
vin paljon arvokasta informaatiota univaiheesta, sillä sen muutoksista ammattilai-
nen kykenee tunnistamaan univaiheen, mistä on hyötyä erityisesti univaikeuksien
tulkinnassa. [6]
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Univaiheen vaihtelut voidaan tulkita erilaisina toimintapisteinä, joita edustavat mal-
lit tuottavat erilaisen aivosähkökäyrän. Koska univaiheet ovat vahvasti linkittyneet
toisiinsa, voidaan piilotettua Markovin mallia soveltaa ongelmaan. Menetelmä tun-
nistaa toimintapisteen vaihtelun ohjaamattomasti ilman asiantuntijan apua koulu-
tuksessa. Kuva 2.5 esittää asiantuntijan ja rakennetun mallin analyysit. [7]

Kuva 2.5: Aivosähkökäyrän analysointi piilotetulla Markovin mallilla. Alempi kaavio
näyttää univaiheen asiantuntijan analyysin perusteella, ja ylempi kaavio näyt-
tää koneoppimismenetelmän tulkitseman univaiheen. [7]

2.2.3 Liikkumistyylin mallintaminen

Taylor ja Hinton esittävät hyvin poikkeuksellisen sovelluksen toimintapisteiden käy-
tölle mallintamalla ihmisen liikkumistyylejä. Sovelluksessa koulutetaan veräjöity, te-
kijöity, ehdollinen rajoitettu Bolzmannin kone aineistolla, joka sisältää erilaisia kä-
velytyylejä, joista kukin kävelytyyli kuvaa yhtä toimintapistettä. Koulutetun mallin
avulla saadaan kehitettyä sopivilla parametreilla alkuperäistä liikkumistyyliä vas-
taava lopputulos lähes kaikissa tapauksissa. [8]

2.3 Toimintapisteiden havaitseminen aivoissa - esi-

merkkejä

Arkipäiväinen ihmisen toiminta viestii aivojen sekä kykenevän tunnistamaan toi-
mintapisteen että oppimaan toimintapistettä vastaavan mallin samanaikaisesti. Ai-
vot pystyvät selvittämään ongelmia maailmassa, joka sisältää tuhansia erilaisia toi-
mintapisteitä käyttämällä jatkuvasti samaa rajapintaa, elimistöämme. On siis täysin
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selvää, että aivot kykenevät valitsemaan saatujen ärsykkeiden pohjalta sopivan toi-
mintapisteen ja käyttäytyvän asianmukaisesti. Voidaankin siis päätellä aivojen ky-
kenevän hyödyntämään opittuja toimintapisteitä. On kuitenkin huomattava, ettei
malleja tai toimintapisteitä ole koodattu vastasyntyneen aivoihin, minkä seuraukse-
na aivoissa voidaan olettaa olevan oppimismekanismi, jonka avulla toimintapisteet
voidaan löytää.

Tässä luvussa tutustutaan aivoalueisiin, joissa tiedetään tapahtuvan toimintapistei-
den hyödyntämistä ja oppimista. Luvussa esitellään aivoissa esiintyvää toimintaa
menemättä oppimismekanismin yksityiskohtiin.

2.3.1 Hippokampuksen yhdistävä koodaus

Vauriot hippokampuksessa ovat antaneet viitteitä kyvystä muodostaa episodinen
muisti, joka tallentaa eri aivoalueiden tilan ja tilamuutokset tietyllä aikahetkellä.
Muisteltaessa jotakin tapahtumaa hippokampus toistaa koetun tilan aktivoimalla
aivoalueita. [9]

Vaikka ajatus onkin teoriassa hyvin yksinkertainen, sisältää se useita ongelmia. Mi-
käli vain nykyinen subjektiivinen tilanne tulee tallettaa muistiin, onnistuu se edellä
kuvatulla menetelmällä. Mikäli tilanne sisältää relaatioita useamman tekijän välillä,
ei niitä kuitenkaan pystytä selvittämään yhtä helposti. Mikäli Mika on esimerkiksi
lainannut kirjaansa Heikille, ei pelkkä sanojen �Mika�, �kirja� ja �Heikki' tallenta-
minen muistiin riitä kuvaamaan tilannetta täydellisesti. Tämä on kuitenkin selvi-
tettävissä rooliin sitomisella (role binding). Tämänkaltainen sitominen edellyttää
hippokampukselta yhdistävää koodaamista (conjunctive coding). [10]

Vaikka esimerkki onkin hyvin käytännönläheinen, se kuvaa hyvin millä tavoin toi-
mintapisteet näkyvät hippokampuksessa. Kun puhutaan kirjan lainaamisesta, on
tiedossa välittömästi toimintapiste, joka kuvaa lainaustapahtumaa. Jos Mika oli-
si varastanut kirjan Heikiltä, olisi tilanne tallettunut hippokampukseen eri tavoin,
jolloin myös toimintapiste olisi ollut erilainen.

2.3.2 Hippokampuksen paikka-, päänsuunta- ja hilasolut toi-

mintapisteen määrääjinä

Hippokampuksen tiedetään osallistuvan myös suuntavaistoon. Hippokampus sisäl-
tää paikkasoluja (place cells), jotka ovat aktiivisia eliön ajatellessa tiettyä paikkaa
tai eliön ollessa tietyssä paikassa. Rottia tutkittaessa on voitu löytää hyvin tarkasti
rotan sijainti labyrintissa tutkimalla paikkasolujen aktivaatiota. [11] Toimintapiste-
tulkinta näille soluille on varsin selkeä. Solujen aktivaatio ilmaisee muille aivoalueille
tietyn eliön sijainnin. Hippokampus toimii siis tässä mallissa veräjäverkkona.

Hippokampus sisältää toisen solupopulaation, jonka solut ovat aktiivisia vain tietyssä
tilanteessa. Rotilla tehdyt kokeet osoittavat, että hippokampus sisältää soluja, jotka
ovat vahvasti riippuvaisia ainoastaan pään suunnasta. Nämä päänsuuntasolut (head
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direction cells) ovat tulkittavissa myös toimintapisteen määrääjinä, jotka ilmaisevat
muille aivoalueille nykyisen katselusuunnan. [12]

Edellisiä solupopulaatioita mutkikkaampia ovat hilasolut (grid cells). Kuten paikka-
solujen aktivaatio, myös hilasolujen aktivaatio on riippuvaista eliön sijainnista. Hila-
solut eivät kuitenkaan ole aktiivisia vain yhdessä paikassa, vaan solujen muodostama
yhteinen aktivaatiokuvio ilmaisee eliölle sen nykyisen sijainnin. Tutkimukset osoit-
tavat samanaikaisesti aktivoituvien solujen aktivoituvan joka kerta samalla tavoin,
joten hilasolujen aktivaatiota voidaan pitää paikkasoluja vastaavana mekanismina
eliön paikan ilmaisemisessa. Rotilla tehdyt tutkimukset osoittavat kahden identti-
sen paikan tuottavan erilaisen vastineen, mikäli rotta itse kulkee paikkojen välillä
tiedostaen siirtymisensä. Kuitenkin merkittäviä päällekkäisyyksiä esiintyy aktivoi-
tuvissa soluissa. Kuvassa 2.6 esitetään hilasolujen aktivaatiota rotalla sen kulkiessa
kahden identtisen huoneen välillä. [13]

Hilasolujen toimintapistetulkinta on vastaava kuin paikkasolujen. Kun hippokam-
puksen hilasoluissa esiintyy tietty kuvio, saavat muut aivoalueet tiedon nykyisestä
sijainnista. Sijaintitieto taasen vaikuttaa oleellisesti eliön toimintapisteeseen.

2.3.3 Aivokuori - Biasoidun kilpailun malli

Aivokuorella esiintyy useita ilmiöitä, jotka viittaavat toimintapisteiden olemassao-
loon. Selkeimpänä esimerkkinä voidaan pitää valikoivaa tarkkaavaisuutta. Arkipäi-
väiset kokemukset viittaavat siihen, että huomion kiinnittyessä johonkin asiaan suo-
datetaan automaattisesti epäoleellisia ärsykkeitä.

Tarkkaa selitystä ilmiölle ei kirjoitushetkellä tunneta. Tutkimukset näköaivokuo-
ren V4-alueella viittaavat aivojen kykenevän valikoimaan ärsykkeitä keskittymisen
mukaan [14]. Myös keskittymiskyvyn on ehdotettu aiheutuvan samanlaisen ilmiön
kautta [15]. Molemmissa tapauksissa on sovellettu biasoidun kilpailun mallia.

Biasoidun kilpailun mallissa alhaalta-ylöspäin -vaikutukset (bottom-up) aktivoivat
biasoinnin, joka näkyy ylhäältä-alas -vaikutuksena (top-down) vaimentaen epäoleel-
lisia ärsykkeitä. Mallilla voidaan selittää useita aivoissa tapahtuvia ilmiöitä. Mallin
pohjalta tuotetut näköaivokuoren simulaatiot tuottavat hyvin realistisen lopputu-
loksen [16]. On syytä havaita biasoidun kilpailun mallin olevan hyvin analoginen
toimintapisteajattelun kanssa. Ylemmän tason biasointi määrää alemmille tasoille
toimintapisteen.

Näköaivokuoren V1-alueelle annetulla ärsykkeellä voidaan tuottaa näkökenttään
staattinen fosfeeni (näköaistimus ilman valonlähdettä). V5-alueella tuotetun ärsyk-
keen tiedetään vaikuttavan fosfeenin liikkumiseen näkökentässä. Täten voidaan pää-
tellä V5-alueen ilmaisevan toimintapisteen (nykyisen liikkumissuunnan) V1-alueelle,
minkä ansiosta tietoisesti havaittu kokemus on yhtenäinen. [17]

On syytä havaita toimintapisteajattelun olevan kerrostettavissa, jolloin toimintapis-
teet muodostavat hierarkkisen rakenteen. Esimerkiksi ruokaillessa hierarkian ylin ta-
so määrää alemmille tasoille toimintapisteen. Jokin alemmista tasoista vastaa kar-
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Kuva 2.6: Hilasolujen aktivaatio. Kuvassa näkyy 25 hilasolun aktivaatio rotan kulkiessa
kahdessa identtisessä huoneessa ja niitä yhdistävässä käytävässä. Koe oli jaettu
kahteen osioon, jonka puolivälissä identtisten laatikoiden paikkaa vaihdettiin.
Vasemmalla näytetään aktivaatiot kokeen ensimmäiseltä puoliskolta, ja oikeal-
la näytetään aktivaatiot kokeen jälkimmäisellä puoliskolla. Harmaalla esitetyt
pisteet kuvaavat rotan sijaintia ja kulkua labyrintissä ilman solun aktivaatiota.
Mustalla esitetty kuvaa solun aktivaatiota kyseisessä sijainnissa. [13]

kealla tasolla toiminnasta (�leikkaan ruokaa, siirrän ruokaa suuhun�) jonkin vielä
alemman tason vastatessa tarkemmasta toiminnasta (�liikutan veistä, liikutan kät-
tä�). Nämäkin tasot ovat jaettavissa useisiin alatasoihin.



Luku 3

Ohjaamattoman oppimisen

tilastollisia menetelmiä

Tässä luvussa tutustutaan menetelmiin, jotka ovat välttämättömiä luvussa 4 esitet-
tävien menetelmien ymmärtämisessä. Luvussa esitellään kaksi tunnettua menetel-
mää: pääkomponenttianalyysi (Principal Component Analysis, PCA) ja kanoninen
korrelaatioanalyysi (Canonical Correlation Analysis, CCA). Näistä ensimmäinen on
laajasti käytössä oleva tekniikka, joka mahdollistaa moniulotteisen aineiston ulottu-
vuuksien vähentämisen. Jälkimmäinen tekniikka taasen on oiva apuväline pyrkiessä
löytämään korreloivia piirteitä kahden eri aineiston välillä.

Menetelmiä esitellessä pääpainona on menetelmien perusperiaatteiden ymmärtämi-
nen. Kanonisen korrelaatioanalyysin osalta esitellään myös perusmuotoinen iteratii-
vinen menetelmä, joka on pääosassa luvussa 4 esitettävässä parannetussa kanonises-
sa korrelaatioanalyysissä.

3.1 Pääkomponenttianalyysi

Pääkomponenttianalyysiä käytetään aineiston ulottuvuuksien pienentämiseen pyr-
kien menettämään mahdollisimman vähän informaatiota. Menetelmässä oletetaan
informaation kuvautuvan aineistossa variaationa. Näin ollen etsimällä aineistosta
sellaiset komponentit, joissa variaatiota on eniten, löydetään myös komponentit,
jotka sisältävät informaatiota eniten. Kun käytettäviä komponentteja lisätään, saa-
daan lopulta selitettyä kaikki aineiston variaatio. Usein ei kuitenkaan haluta etsiä
kuin muutama pääkomponentti, joissa informaatiota esiintyy eniten. Kun pääkom-
ponentit on löydetty, projisoidaan kaikki aineisto näille komponenteille. Tämän jäl-
keen ulottuvuuksien määrä vastaa valittujen pääkomponenttien määrää. [1, sivut
108-109]

Kaikkien aineiston komponenttien keskinäistä variaatiota kuvaa kovarianssimatriisi
(Σ). Kovarianssimatriisin ominaisvektorit kuvaavat ominaisarvojen suuruusjärjes-
tyksessä suuntia, joissa variaatiota on eniten. Tällöin aineisto voidaan projisoida

12
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k:hon ulottuvuuteen:

Z = W T (X −M), (3.1)

jossa Z kuvaa projisoitua aineistoa,W kuvaa kovarianssimatriisin k:ta suurinta omi-
naisarvoa vastaavaa ominaisvektoria, X aineistoa alkioita jaM aineiston keskiarvoa.
[1, sivut 109-110]

3.2 Kanoninen korrelaatioanalyysi

Kanoninen korrelaatioanalyysi on H. Hotellingin vuonna 1936 kehittämä menetelmä
[18], joka on hyvin käytetty tilastotieteessä lineaaristen vastaavuuksien löytämiseen
[19]. Menetelmässä pyritään kertomaan aineiston alkiot siten, että aineistojen väli-
nen korrelaatio olisi mahdollisimman suuri.

Menetelmälle löytyy useita käyttökohteita. Mikäli aineistot voidaan viedä lineaari-
kuvauksella samalle suoralle, voidaan aineiston muuttujien välisten suhteiden olet-
taa olevan täysin samat. Jos kanonisessa korrelaatiossa paljastuu yksittäisiä pis-
teitä, joita ei voida kiertää samalle suoralle, voidaan muuttujien olettaa kuvaavan
eri asioita. Tätä ominaisuutta voitaisiin käyttää esimerkiksi kahden erilaisen testin
vertailuun. Mikäli käytettävissä on kaksi rinnakkaista tutkimusmenetelmää, jotka
tuottavat moniulotteista aineistoa, voidaan kanonisella korrelaatioanalyysillä löytää
tutkimusmenetelmien yhtenevyydet. Jos aineisto on kerätty ajallisesti tai paikal-
lisesti muuttuvista ominaisuuksista, voivat muutokset korreloivuudessa indikoida
muuttunutta toimintapistettä. Tähän ajatukseen palataan luvussa 4.

3.2.1 Määritelmä

Matemaattisesti kanoninen korrelaatioanalyysi voidaan kuvata seuraavasti [19]:

max
a,b

cor(ax,by), (3.2)

missä x ja y kuvaavat vertailtavia aineistoja, a lineaarikuvausta x:lle ja b lineaari-
kuvausta y:lle.

Määritelmän pohjalta voidaan muodostaa erilaisia tapoja lineaarikuvausten a ja b
ratkaisemiseksi. Muuttujat voidaan ratkaista analyyttisesti käyttämällä lineaarial-
gebraa [19]. Muuttujat voidaan ratkaista myös iteratiivisesti [18][20].

3.2.2 Iteratiivinen kanoninen korrelaatioanalyysi

Iteratiivista kanonista korrelaatioanalyysiä tehdessä projisoidaan vertailtava aineis-
to hypertasolle, joka on muodostettu käyttäen toista vertailtavaa aineistoa. Tämä
toistetaan myös toiselle vertailtavalle aineistolle.
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On syytä havaita, että iteratiivinen kanoninen korrelaatioanalyysi voidaan toteuttaa
usealla eri tavalla [18] [20] [21] [22]. Tässä yhteydessä tutustutaan menetelmään,
jonka paranneltua versiota käsitellään luvussa 4. Tässä esiteltävä menetelmä on
kuvattu lähteen [20] pohjalta.

Seuraavassa esitettävässä iteratiivisen algoritmin yhteenvedossa oletetaan aineiston
koostuvan useasta riippumattomasta ilmentymästä, joista kukin ilmentymä sisäl-
tää moniulotteisen tuloksen. Käytännössä tämä voisi tarkoittaa kahta erillistä an-
turia (X ja Y ), joista molemmat antavat kaksi ulostuloarvoa (kaksi ulottuvuutta).
Useampi riippumaton ilmentymä voidaan käsittää siten, että antureiden antamat
ulostuloarvot muuttuvat ajan suhteen. Yhteenvedossa esitettävissä kaavoissa tämä
esitetään funktiona t:n suhteen. On syytä huomata, että tämän seurauksena kaikki
ulostulovektoritkin ovat funktioita t:n suhteen.

Menetelmä koostuu neljästä vaiheesta:

1. Keskitys Vertailtavat aineistot keskitetään. Käytännössä tämä tarkoittaa ai-
neiston kunkin alkion vähentämistä aineiston keskiarvolla:

X(t) = X(t)−X(t) (3.3)

Y (t) = Y (t)− Y (t) (3.4)

2. Valkaisu Aineistot valkaistaan. Tällä operaatiolla tarkoitetaan aineiston kom-
ponenttien variaation pakottamista lukuun 1 ja kovarianssien poistamista. Val-
kaisua voidaan siis pitää operaationa, jossa molempien aineistojen kovarians-
simatriisi pakotetaan yksikkömatriisiksi.

3. Projektio Tässä vaiheessa ratkaistaan aineiston projektiot a(t) ja b(t). Nämä
projektiot kuvaavat aineiston sovittumista hypertasoille, jotka ovat mahdolli-
simman lähellä toisiaan. On syytä huomioida ensimmäisellä iteraatiokierrok-
sella matriisien WX ja WY sisältävän satunnaisia pieniä arvoja. Projektio
tapahtuu yksinkertaisesti:

a(t) = WXX(t) (3.5)

b(t) = WYY(t) (3.6)

4. Projektiomatriisien estimointi Käyttämällä edellisessä vaiheessa saatuja
aineiston projektioita a(t) ja b(t) ratkaistaan uudet matriisit WX ja WY.
On syytä huomata, että estimoidessa uutta projektiomatriisia WX käytetään
projektiota b(t) ja vastaavasti WY:tä estimoidessa käytetään projektiota a(t).

Projektiomatriisit voidaan estimoida kahdella eri lähestymistavalla. Ensim-
mäisessä tavassa aineistosta ratkaistaan ulottuvuus kerrallaan vektorien a(t)
ja b(t) arvo. Tällöin menetelmää toistetaan kunnes kaikkien ulottuvuuksien
a(t) ja b(t) ilmentymät on ratkaistu. Ensimmäisessä lähestymistavassa WX ja
WY ovat vektoreita (matriisiesityksenä 1∗n kokoinen matriisi). On syytä havai-
ta vaiheen 3 tuottavan tällöin a(t):lle skalaarimuotoisen ulostulon. Soveltaessa



15

ensimmäistä lähestymistapaa tulee käyttää seuraavia kaavoja estimointiin:

WX =
∑
t

X(t)T ∗ b(t) (3.7)

WY =
∑
t

Y(t)T ∗ a(t) (3.8)

Toisessa lähestymistavassa ratkaistaan kerralla kaikkien ulottuvuuksien a(t) ja
b(t) ilmentymät. Käytännössä tämä on varsin yksinkertainen laajennus edel-
liseen: WX ja WY ovat matriiseja, jonka rivit sisältävät riveillään kutakin ai-
neiston ulottuvuutta vastaavan projektiokertoimen. Tällöin vaiheessa kolme
saadaan a(t):stä vektori (n ∗ 1 kokoinen matriisi), joka kuvaa kaikkien ulottu-
vuuksien projektioita riveillään. Soveltaessa toista lähestymistapaa käytetään
estimoinnissa seuraavia kuvauksia:

WX =
∑
t

b(t) ∗X(t)T (3.9)

WY =
∑
t

a(t) ∗Y(t)T (3.10)

Kahta viimeistä vaihetta toistetaan, kunnes projektiot a(t) ja b(t) eivät enää muutu
merkittävästi. Menetelmä on esitetty kaavamaisesti kuvassa 3.1.



16

Kuva 3.1: Iteratiivinen kanoninen korrelaatioanalyysi. Vertailtavat aineistot keskitetään
ja valkaistaan. Tämän jälkeen aineistoja pyritään projisoimaan toisilleen. Kun
a(t) ja b(t) eivät enää muutu, ilmaisevat ne lähtöaineistojen arvoja projisoi-
tuna mahdollisimman läheisille hypertasoille. [20, muokattu]



Luku 4

Toimintapisteiden paljastaminen

Luvussa 2 todettiin toimintapisteiden käytön olevan helppoa. Luvussa esitettiin
myös muutama esimerkki menetelmien käytöstä, sekä sen merkityksestä aivojen toi-
minnalle. Tässä luvussa esitetään miten toimintapisteet voidaan tunnistaa ja toi-
mintapisteitä vastaavat mallit kouluttaa. Luvussa käsitellään yksinkertaista ratkai-
sua, jossa ihminen määrittää toimintapisteet etukäteen. Luvussa otetaan myös esille
kaksi Boltzmannin koneisiin pohjautuvaa ratkaisumallia, jotka molemmat kykene-
vät paljastamaan toimintapisteet hieman eri toimintaperiaatteilla. Lisäksi luvussa
tutustutaan menetelmään, joka pyrkii löytämään aineistosta toimintapisteet suoraan
yhdistelemällä yksinkertaisia tilastollisia menetelmiä.

4.1 Manuaalinen toimintapisteiden määrittäminen

Ihmisen todettiin kykenevän ratkaisemaan toimintapisteen useissa eri tapauksissa.
Luvun 2.2 kaikki esimerkit, luokittelu, univaiheen seuranta ja liikkumistyylin mal-
lintaminen ovat sopivan alan asiantuntijan ratkaistavissa, joten teoriassa toiminta-
pisteiden määrittäminen on siirrettävissä konepohjaisesta ratkaisemisesta ihmispoh-
jaiseksi.

Määriteltäessä toimintapisteitä manuaalisesti valitaan käytettävä malli ilmiön raken-
teen mukaisesti. Kaikki ilmiöön liittyvä tieto luonnollisesti on syytä ottaa huomioon
mallia kehitettäessä. Mikäli siirtymät eri toimintapisteiden välillä eivät tapahdu yhtä
todennäköisesti, on syytä käyttää piilotettua Markovin mallia. Jos toimintapisteet
siirtyvät yhtä todennäköisesti tilasta toiseen, voi asiantuntijain kirjo -menetelmä olla
parempi ratkaisu.

4.1.1 Esimerkki: Univaiheen analysointi

Luvussa 2 esitettiin univaiheiden olevan tulkittavissa toimintapisteinä. Samassa
yhteydessä esitettiin miten toimintapisteajattelua kyettiin hyödyntämään univai-
heita analysoidessa. Vaikka esitelty malli pohjautuikin aineistolähtöiseen toimin-
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tapisteiden etsintään, voidaan toimintapisteajattelua soveltaa myös manuaalisen
toimintapiste-etsinnän yhteydessä. On syytä huomata, että tämä esimerkki on täy-
sin teoreettinen, eikä tässä esimerkissä mennä tarkemmin matemaattisiin yksityis-
kohtiin. Esimerkin tavoitteena on selventää univaiheen analysoinnin olevan toteu-
tettavissa automatisoidusti asiantuntijan opetettua tietokonemallin.

Univaiheen analysointi voidaan toteuttaa manuaalisesti piilotetulla Markovin mallil-
la, jossa kukin univaihe muodostaa yhden toimintapisteen. Kutakin toimintapistettä
taasen vastaa malli, joka tuottaa vain tietynlaista aineistoa. Asiantuntijan tehtävä
on määrätä todennäköisyydet, joilla toimintapiste (univaihe) vaihtuu toiseksi. Kun-
kin eri univaiheen malli voidaan kouluttaa yksitellen käyttämällä referenssiaineistoa,
joka voi olla yksinkertaisesti EEG-käyrä yön ajalta. Asiantuntija erittelee referens-
siaineistosta univaiheet, jonka jälkeen eriteltyä aineistoa käytetään kouluttamaan
kutakin univaihetta vastaava malli.

Teoriassa edellä esitetty malli voisi tuottaa järkevän univaiheita simuloivan EEG-
käyrän. Kiinnostuksen kohde on kuitenkin käyttää saatua tietoa univaiheen tunnis-
tamiseen aineiston tuottamisen sijaan. Mallin kääntäminen vastakkaiseksi on kui-
tenkin mahdollista toimintapisteiden ja niiden välisten suhteiden ollessa tiedossa.

Ensimmäinen toimintapisteen määrittäminen joudutaan tekemään vain uuden ai-
neiston ja mallien pohjalta. Mitä lähempänä aineisto on jotakin mallia, sitä toden-
näköisemmin aineisto on generoitunut mallin kuvaamassa toimintapisteessä. Tämän
jälkeen toimintapisteen ei odoteta muuttuneen ennen kuin aineiston arvot eivät ole
enää riittävän todennäköisesti mallin tuottamia. Uutta oletettua toimintapistettä ar-
vioitaessa tarkastellaan siirtymätodennnäköisyyksiä, sekä todennäköisyyksiä, joilla
aineisto olisi tuotettu jossakin toimintapisteessä. Voidaan siis todeta, että piilotetun
Markovin mallin parametrit ovat teoriassa riittäviä estimoitaessa univaihetta.

4.1.2 Esimerkki: Luokittelu

Manuaalinen toimintapisteen määrittäminen voi tulla kysymykseen luokittelussa.
Mikäli luokittelijan tulee toteuttaa luokittelua useissa merkittävästi erilaissa tilan-
teissa, perinteiset yksinkertaiset neuroverkkoratkaisut eivät todennäköisesti tuota
toivottua tulosta [2], jolloin on tarpeen käyttää asiantuntijain kirjo -menetelmää
apuna.

Otetaan esimerkiksi yksinkertainen tilanne, jossa esineitä luokitellaan kahteen eri
huoneeseen riippuen esineen väristä. Esineen muut ominaisuudet määräävät esineen
sijainnin huoneessa. Esineiden toivotut sijainnit eivät kuitenkaan ole samat eri huo-
neissa, vaan kummallakin huoneella on omanlainen järjestyksensä.

Tässä yksinkertaisessa luokittelusovelluksessa on perusteltua käyttää asiantuntijain
kirjo -menetelmää. Eri huoneet muodostavat oman toimintapisteensä, joissa esinei-
den sijoittelusäännöt ovat erilaiset.
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4.2 Veräjöity ehdollinen rajoitettu Boltzmannin ko-

ne

Veräjöity ehdollinen rajoitettu Boltzmannin kone (Gated Conditional Restricted
Boltzmann Machine, Gated CRBM) kehitettiin alun perin ohjaamattomaan kuvan
muutosten oppimiseen ja mallintamiseen. Menetelmälle annetaan alkuperäinen ja
muuttunut kuva. Menetelmä tunnistaa miltä osin kuva on muuttunut, jonka jälkeen
menetelmä kykenee hyödyntämään oppimaansa tuottaakseen vastaavan muunnok-
sen uudelle kuvalle. Muutokset voivat sisältää esimerkiksi liikkumista, suodattamis-
ta tai jonkin muun merkittävän muutoksen. Vaikka esimerkkien yhteydessä puhu-
taankin kuvista, on syytä huomata menetelmän toimivan millä tahansa aineistolla.
[23]

Erityisen kiinnostavaksi menetelmän tekee sen laajennettavuus. Rajoitetut Boltz-
mannin koneet ovat syvien uskomusverkkojen (Deep Belief Nets) perusrakenneosia.
Näitä käyttämällä piilotetut neuronit toimivat sisääntuloina uusille piilotetuille neu-
roneille. Kouluttaminen voidaan suorittaa jo koulutettujen neuronien päälle, jolloin
saavutetaan uusia ylempiä toimintapisteen tunnistavia tasoja. Tässä luvussa ei hyö-
dynnetä tätä mahdollisuutta, mutta on syytä laittaa merkille menetelmän laajen-
nettavuus. Luvussa 4.3 palataan ajatukseen käyttämällä toista Boltzmannin koneen
muunnelmaa. [24, s. 634] [23]

4.2.1 Toimintaperiaate

Tarkastellaan ensin veräjöityä Boltzmannin konetta, joka on jo opetettu toimimaan
halutusti. Veräjöity Boltzmannin kone koostuu kolmesta omasta tasostaan: sisään-
tuloneuronit, joiden arvot riippuvat syötettävästä aineistosta; piilotetut neuronit,
joiden arvot riippuvat sisääntuloneuronien arvoista ja ulostuloneuroneista, joiden
arvot riippuvat sisääntuloneuroneista ja piilotetuista neuroneista. On syytä huoma-
ta, että piilotettujen neuronien arvot ovat binäärisiä (voivat saada vain arvot 0 tai
1), kun taas sisääntuloneuronien ja ulostuloneuronien arvot ovat jatkuvia. Kuvassa
4.1 esitetään mallin arkkitehtuuri.

Perusperiaate on minimoida energiafunktio E, jonka arvot riippuvat annetusta ai-
neistosta, sekä neuronien välisistä painoista, jotka määräytyvät opetuksen pohjalta.
Opetukseen tai sisääntulevien neuronien tilaan ei voida koskea, joten etsittäessä
minimiä tulee ulostuloneuronien tila määrittää sopivasti. Kaikkien arvojen ollessa
binäärisiä energiafunktio E määräytyy seuraavasti [23]:

E(y,h;x) =
∑
ijk

Wijkxiyjhk −
∑
jk

W yh
jk yjhk −

∑
j

W y
j yj −

∑
k

Wh
k hk, (4.1)

jossa x kuvaa kaikkien sisääntuloneuronien joukkoa, h kaikkien piilotettujen neuro-
nien joukkoa, y ulostulovektorien joukkoa ja W eri neuronien välisiä painoja. Vaik-
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Kuva 4.1: Veräjöidyn ehdollisen rajoitetun Boltzmannin koneen arkkitehtuuri. Vasem-
malla esitetään Boltzmannin koneen käyttöä veräjöitynä regressiona, jossa ku-
kin piilotettu neuroni muuttaa hieman ulostulevan kuvan rakennetta. Oikealla
esitetään sama malli siten, että sisääntulevat yksiköt toimivat veräjäverkkona,
jotka määräävät miten paljon kukin piilotettu neuroni saa vaikuttaa kuvaan.
[23]

ka minimointiongelma vaikuttaakin suhteellisen yksinkertaiselta, ei ongelma ole rat-
kaistavissa analyyttisillä työkaluilla. Tämän takia joudutaan turvautumaan iteratii-
viseen algoritmiin, joka pyrkii löytämään lokaalin minimin energiafunktiosta. Tätä
algoritmia kutsutaan Gibbs-otannaksi. [24]

Gibbs-otannassa oletetaan kullakin neuronilla olevan tietty todennäköisyysjakauma,
jonka mukaisesti sen aktivaatio toteutuu. Gibbs-otannan alkutilassa kunkin neuronin
oletetaan olevan passiivinen. Kukin muutettavissa oleva neuroni käydään luonnolli-
sessa järjestyksessä läpi, jolloin lasketaan todennäköisyys, jolla neuroni olisi aktiivi-
nen olettaen sen hetkisen tilan olevan pysyvä (piilotetulle neuronille p(hk = 1|x,y)
ja ulostuloneuronille p(yj = 1|x,h)). Tätä toistetaan kunnes neuronien tilat ovat
konvergoituneet. [24]

Mikäli oletetaan neuronien tilojen olevan vain binäärisiä, saadaan seuraavat yhdis-
telmätodennäköisyydet tai päivityssäännöt [23]:

p(hk = 1|x,y) =
1

1 + exp(−
∑

ijWijkxiyj)
(4.2)

p(yj = 1|x,h) =
1

1 + exp(−
∑

ikWijkxihk)
, (4.3)

joissa x kuvaa kaikkien sisääntuloneuronien joukkoa, h kaikkien piilotettujen neuro-
nien joukkoa, y ulostulovektorien joukkoa ja W eri neuronien välisiä painoja.
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On syytä kuitenkin huomata sääntöjen rajoittavan huomattavan paljon käytettä-
vää kuva-aineistoa. Olettaessa ulostuloarvojen olevan binäärisiä oletetaan samalla
kuvien olevan täysin mustavalkoisia. Tämän takia on syytä muuttaa ulostuloneuro-
nien jakauma normaalijakautuneeksi [23]:

p(yj = 1|x,h) = N (yj; v
∑
ik

xihkWijk +W y
j , v

2), (4.4)

jossa xj kuvaa sisääntulevaa arvoa, yj kuvaa ulostuloarvoa, hk piilotetun muuttujan
arvoa, Wijk linkkien painoja ja v varianssia. Tällöin myös energiafunktion muoto
muuttuu:

E(y,h;x) =
1

2v2

∑
j

(yj −W y
j )2 − 1

v

∑
ijk

Wijkxiyjhk −
∑
k

Wh
k hk, (4.5)

jossa muuttujat on määritetty vastaavasti kuin edellä.

On syytä havaita, ettei myöskään todennäköisyyksiä p(yj = 1|x,h) ja p(hk = 1|x,y)
voida ratkaista analyyttisesti, vaan Gibbsin näytteistys on tässäkin tapauksessa pa-
kollinen operaatio. [24]

Edellä esiteltiin kahden hyvin tavallisen todennäköisyysjakauman käyttöä. On syytä
havaita, että nämä jakaumat eivät suinkaan ole ainoat vaihtoehdot, vaan ehdolliset
todennäköisyydet voidaan ratkaista mielivaltaisilla jakaumilla. [23]

4.2.2 Kouluttaminen

Koulutettaessa koneoppimismenetelmiä käytetään usein suurimman uskottavuuden
(Maximum Likelihood, ML) -estimaattia, jossa pyritään maksimoimaan todennäköi-
syys, että annetulla aineistolla malli tuottaisi halutun vasteen. Veräjöidyssä Boltz-
mannin koneessa vastaavana maksimoitavana suureena voidaan pitää keskimääräistä
ehdollista logaritmista uskottavuutta [23]:

L =
1

N

∑
α

log p(yα,h;xα)), (4.6)

jossa N kuvaa näytteiden määrää ja xα ja yα kuvaavat jokaista näyteparia. Funk-
tion maksimointi voidaan tehdä millä tahansa sopivalla menetelmällä. Maksimointi
voidaan esimerkiksi suorittaa funktion gradienttiin pohjautuvalla menetelmällä, jos-
sa kuljetaan askeleittain funktion suurinta kasvusuuntaa (gradienttia) kohti. Tässä
tapauksessa gradienttifunktioksi saadaan:

∂L

∂W
=

∑
α

(
∂E(yα,h;xα)

∂W
)h −

∑
α

(
∂E(y,h;xα)

∂W
)h,y, (4.7)

jossa W kuvaa kaikkein linkkien painoja (myös biasointipainot huomioiden).
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4.2.3 Sovellukset ja käyttö toimintapisteen hakuun

Kuten voidaan olettaa, opitun muutoksen analysointi on myös mahdollista. Aineis-
tosta voidaan esimerkiksi hakea näytteet, joiden välinen muutos on mahdollisimman
pieni. Tällä tavoin on onnistuneesti ryhmitelty luonnollisesti tuotettuja numeroita.
Kokeessa menetelmälle annettiin luonnollisesti tuotettu mallinumero, jonka jälkeen
menetelmä kävi aineiston läpi. Menetelmä muodosti annetun näytteen ja kunkin ai-
neistossa olevan näytteen välille etäisyyssuureen käyttäen vaadittua muutosta etäi-
syysmittarina. Kuvassa 4.2 esitetään saatuja tuloksia. [23]

Kuva 4.2: Veräjöidyn ehdollisen rajoitetun Boltzmannin koneen käyttö samanlaisen ku-
van löytämisessä. Vasemmassa ylälaidassa on esitetty kuva, jota vastaavia ku-
via on haluttu lähdeaineistosta löytää. Ylärivin muut viisi kuvaa koostuvat
koneoppimismenetelmän löytämistä parhaista vastaavuuksista käyttäen muu-
toksen suuruutta mittana. Alempi rivi koostuu euklidisen etäisyyden (kuvien
puhtaan vastaavuden) antamista vastaavuuksista. [23, kuva 11.5]

On merkittävää huomata, että menetelmä kykenee havaitsemaan sekä aineiston
käyttäytymisen toimintapisteissä että toimintapisteiden muutokset. Mikäli aineiston
näytteet ovat muodostuneet esimerkiksi ajan suhteen, voidaan menetelmällä tunnis-
taa tilanne, jossa opittu ennuste näytteiden muuttumiselle ei pädekään odotetusti.
Näitä yllättäviä muutoksia voidaan pitää toimintapisteen muuttumisen merkkeinä.
Toisaalta itse päättelysääntö kuvaa järjestelmän ominaista toimintaa tietyssä toi-
mintapisteessä.

4.3 Puolirajoitettu Boltzmannin kone ja syvät us-

komusverkot

Tässä luvussa käsittellään myös yhtä Boltzmannin koneen erikoistapausta, puolira-
joitettua Boltzmannin konetta (Semi-restricted Boltzmann Machine, SRBM), joka
tuottaa tiedon toimintapisteen muuttumisesta varsin erilaisella menetelmällä ver-
rattuna edellisessä luvussa esiteltyyn erikoistapaukseen. Edellisessä luvussa todettiin
rajoitettujen Boltzmannin koneiden olevan syvien uskomusverkjojen perusrakenneo-
sia. Tässä luvussa edetään puolirajoitettuun Boltzmannin koneeseen, jota voidaan
vastaavasti käyttää syvän uskomusverkon rakenneosana. Tätä ominaisuutta hyödyn-
netään toimintapisteiden tunnistamisessa.

Tässä luvussa ei tutustuta syvällisesti puolirajoitetun Boltzmannin koneen tai sy-
vien uskomusverkkojen rakenteeseen. Myöskään näiden mallien opettamista ei tässä
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yhteydessä käsitellä. Luvun tavoitteena on antaa vaihtoehtoinen näkemys Boltz-
mannin koneen käytöstä toimintapisteiden etsimiseen. Syvistä uskomusverkoista ja
puolirajoitetusta Boltzmannin koneesta löytyy lisätietoa lähteistä [25], [26] ja [27].

4.3.1 Toimintaperiaate

Tutustutaan ensin puolirajoitetun Boltzmannin koneen rakenteeseen. Puolirajoitet-
tu Boltzmannin kone koostuu kahdesta eri neuronipopulaatiosta: näkyvästä ja näky-
mättömästä. Kaikista näkyvistä neuroneista on suuntaamaton yhteys jokaiseen nä-
kymättömään neuroniin. Lisäksi näkyvät neuronit on linkitetty toisiinsa, mikä mah-
dollistaa luonnollisemman liukuman kahden vierekkäisen arvon välille. Tätä voidaan
havainnollistaa luonnollisella kuvalla, jossa yksittäinen piste voidaan approksimoida
vierekkäisten pikselien perusteella. Kuvassa 4.3 kuvataan puolirajoitetun Boltzman-
nin koneen arkkitehtuuri. [25]

Puolirajoitetun Boltzmannin koneen rakenne voidaan kuvata energiafunktiona [25]:

E(v,h) = −
∑
i

bivi −
∑
j

bjhj −
∑
i,j

vihjwij −
∑
i<i′

viv
′
iLii′ , (4.8)

jossa vi kuvaa näkyvää neuronia, hj piilotettua neuronia, wij näkyvän ja piilotetun
neuronin välistä painoa ja Lii′ kahden näkyvän neuronin painoa. On syytä huomata
energiafunktion vastaavan hyvin vahvasti rajoitetun Boltzmannin koneen energia-
funktiota. Ainoana erona voidaan pitää viimeistä termiä, mikä yhdistää alemman
tason neuronit keskenään.

Aineiston rakenteen tunnistamisen kannalta yksittäinen binääriverkko ei kuitenkaan
ole tehokas. Menetelmää voidaan laajentaa syväksi uskomusverkoksi, jossa piilotet-
tuja tasoja on useita. Menetelmän kouluttaminen tapahtuu käytännössä täysin sa-
moin kuin yksittäisen puolirajoitetun Boltzmannin koneen. Kun alin piilotettu taso
on koulutettu, lisätään tason päälle uusi piilotettu taso. Tässä yhteydessä toisiksi
ylimmän tason neuronien välille lisätään yhteydet, jonka jälkeen uusi piilotettu taso
voidaan kouluttaa. Kuvassa 4.3 kuvataan puolirajoitettujen Boltzmannin koneiden
käyttöä syvän uskomuksen verkkojen rakentamisessa. [25]

4.3.2 Sovellukset ja toimintapistetulkinta

Koulutettaessa verkkoa jokainen uusi taso löytää piirteitä alemman tason syötteestä
[25]. Alimmalla piilotetulla tasolla saattaa tapahtua yksinkertaista suodattamista
ylemmän tason huolehtiessa kokonaisuuden järkevyydestä. Mikäli verkolle on kou-
lutettu esimerkiksi mustavalkoisina kuvina kuviot neliö ja ympyrä, saattavat tietyt
ylimmän tason neuronit ilmaista puhtaasti näytetyn kuvion muotoa abstraktimmal-
la tasolla.

Syvissä uskomusverkoissa pätee neuronien todennäköisyystulkinta, mikä tekee toi-
mintapisteen päättelystä yksinkertaista. Tunnettaessa näkyvän tason neuronien ak-
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Kuva 4.3: Vasemmalla esitetään puolirajoitetun Boltzmannin koneen arkkitehtuuri. Nä-
kyvät neuronit on linkitetty suuntaamattomasti keskenään ja näkymättömien
neuronien kanssa. Näkymättömien neuronien välillä ei ole linkkejä. Oikealla esi-
tetään puolirajoitetuista Boltzmannin koneista rakennetun syvän uskomusever-
kon arkkitehtuuri, jossa vain ylimmän tason neuronien väliltä puuttuvat linkit.
[26, muokattu]

tivaatiot voidaan ensimmäisen piilotetun tason neuronien aktivaatiotodennäköisyy-
det laskea. Kun ensimmäisen piilotetun tason neuronien aktivaatiotodennäköisyydet
ovat tunnettuja, voidaan tutkia toisen tason neuronien aktivaatioita. Tätä toistetaan
kunnes kaikkien tasojen neuronien aktivaatiotodennäköisyydet ovat tiedossa. Ylim-
män tason aktivoituneet neuronit kuvaavat toimintapisteitä. [25]

Mikäli puolirajoitetuista Boltzmannin koneista muodostuvaa verkkoa halutaan käyt-
tää (opittujen) kuvioiden tuottamiseen, voidaan tämäkin toteuttaa. Ylimmän tason
neuronien aktiivisuudet arvotaan tai alustetaan halutuiksi. Tämän jälkeen kahden
ylimmän tason välillä suoritetaan Gibbs-otanta, jolla pyritään löytämään kaavassa
4.8 kuvatun energiafunktion minimi. Gibbs-otanta voidaan suorittaa tässä yhtey-
dessä kuitenkin poikkeavasti painottaen näytteistystä vain toiseksi ylimmän tason
neuroneihin. Gibbs-otantaa jatketaan taso kerrallaan alaspäin. Tätä voidaan jatkaa
näkyvälle tasolle asti, mutta menetelmän ulostuloarvon voi laajentaa reaaliarvoi-
seksi käyttämällä alimman piilotetun tason aktivointitodennäköisyyttä varsinaisen
aktivaation sijaan. [25]

Kokonaisuudessaan syvän uskomuksen verkot mahdollistavat abstraktiohierarkioi-
den tuottamisen. Alimman tason neuronit oppivat yksittäisiä piirteitä ylempien ta-
sojen tunnistaessa kokonaisuuden. Kääntäen ylemmän tason neuronien aktivaatiot
antavat määräyksiä alemman tason neuroneille. Analogioita tälle tilanteelle löytyy
lukuisia. Yrityksessä johtaja näkee kokonaiskuvan ja parhaimmillaan vaistoaa pro-
jektit, joihin on syytä panostaa. Tämä näkyy alemmalla tasolla käskyinä, minkä
seurauksena alempi taso toteuttaa käskyä suhteellisen riippumattomasti ylemmäs-
tä tasosta. Tätäkin yksinkertaisemmin ihmismassaa voidaan pyytää muodostamaan
suorakulmio tai neliö määräämättä yksittäisten ihmisten sijaintia muodostettavassa
kuviossa.
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4.4 Ulkotulon ja laajennetun kanonisen korrelaatio-

analyysin käyttö toimintapisteiden estimointiin

Edelliset luvut esittelivät menetelmiä, joiden rakenteessa oli varsin suora yhteys toi-
mintapisteisiin. Tässä luvussa tutustutaan erilaiseen menetelmään, jossa lopputulos
ei ole aina aivan yhtä selkeä toimintapistetulkinnaltaan. Menetelmä kuitenkin kyke-
nee paljastamaan aineistosta potentiaalisia toimintapisteitä, sekä muuttujat, jotka
määrittävät toimintapisteen muutoksia. Luvussa esitettävä menetelmä on kehitetty
Aalto-yliopiston teknillisessä korkeakoulussa. Menetelmän on patentoinut ZenRobo-
tics Oy, ja tämä luku on kirjoitettu ZenRobotics Oy:n patenttihakemuksen pohjalta
[20].

Luvussa edetään toimintapisteen löytämisestä yhdessä erikoistapauksessa useisiin
lisäyksiin, jotka muuttavat menetelmää merkittävästi. Erikoistapauksessa esitelty
menetelmä on vain harvoin käyttökelpoinen, mutta se antaa ymmärrettävän kuvan
menetelmästä.

4.4.1 Toimintaperiaate

Tarkastellaan aluksi yksinkertaista tilannetta, jossa pyritään löytämään mustan pis-
teen liikkumissuunta tutkittaessa kahta harmaataustaista kuvaa (ennen liikkumista
ja liikkumisen jälkeen). Kuvia analysoitaessa voidaan kuvien pikselit muuttaa yk-
sinkertaisesti vektoreiksi, joiden ulottuvuuksien määrä riippuu kuvian leveydestä ja
korkeudesta. On syytä huomata, ettei tässä yhteydessä muodosteta leveys x korkeus
kokoista matriisia vaan vektorin, jonka pituus on leveys∗korkeus. Vektorissa yksit-
täiset alkiot kuvaavat sitä vastaavan pikselin intensiteettiä asteikolla 0 (valkoinen)
- 1 (musta). Kuvataan vektoreita x:llä (alkutila) ja y:llä (lopputila). Otetaan vek-
torien välillä ulkotulo:

z = xyT , (4.9)

jossa muodostunut z kuvaa matriisia, jonka koko on leveys ∗ korkeus x leveys ∗
korkeus. Muodostuneen matriisin koko on siis ilmiömäisen suuri. Mikäli käsittel-
täisiin kuvaa, jonka koko on 10 ∗ 10, saataisiin muodostuneen matriisin alkioiden
määräksi 10000.

Ulkotulon tulkitseminen on tässä yhteydessä varsin yksinkertaista. Ulkotuloa otet-
taessa kerrotaan jokaisella x-vektorin alkiolla vektorin y alkiot. Kukin sarake (ja rivi)
kuvaa siten molemmista kuvista muodostunutta yhdistelmää tietyn pikselin suhteen.
Mikäli kerrotaan pienellä arvolla (harmaalla pikselillä) suurta arvoa (musta pikseli),
saadaan lopputulokseksi myös harmaa pikseli. Vastaavasti pienellä arvolla kerrot-
taessa toista pientä arvoa saadaan myös hyvin pienen arvon. Sen sijaan suhteelli-
sen suurella intensiteettiarvolla kertoessa toista suurta intensiteettiarvoa muutokset
ovat vähäisiä.

Saatua matriisia voidaan käsitellä laajempana aineistona, jonka jokainen sarake ku-
vaa yhtä vektoria. Tästä aineistosta voidaan selvittää pääkomponenttianalyysillä



26

suurimmat vaihtelun suunnat, jotka kuvaavat pikselin liikkumista aineistossa. Vas-
taavasti kuin luvussa 4.2 voidaan tätä tietoa käyttää toimintapisteen määrittämi-
seen. Yksittäinen kuvassa tapahtuva muutos kyetään löytämään, jota hyödyntämäl-
lä voidaan muodostaa ennuste tulevasta kuvasta. Mikäli ennuste ei täsmää odotetun
kanssa, on toimintapiste saattanut muuttua.

4.4.2 Menetelmän laajentaminen

Edellä kuvattu menetelmä sisältää useita heikkouksia. Aineistoa varten tehtiin useita
oletuksia, ja jo puolivälissä voitiin havaita käsiteltävien alkioiden määrän kasvavan
suuresti. Tätä varten menetelmä sisältää useita eri tekniikoita aineiston esikäsitte-
lyyn. Myös vaihtoehtoinen tapa käsitellä alkioita on olemassa.

Ensimmäinen laajennus koostuu raaka-aineiston esikäsittelystä. Koska tavoitteena
on löytää toimintapisteet ja niihin vaikuttavia muuttujia, suodatetaan aineistos-
ta kiinnostavat piirteet esiin. Toinen laajennus sisältää ulkotulon jälkeen kerrotun
aineiston vaihtoehtoisen käsittelyn muilla ohjaamattoman oppimisen menetelmillä.
Toiseen laajennukseen sisältyy myös vaihtoehtoinen tapa edetä ilman ulkotuloa pi-
täen alkioiden määrän pienempänä. Kolmas laajennos keskittyy aineiston jälkikäsit-
telyyn sopivalla tekniikalla. Kuten havaittiin, aineiston laadusta riippuen lisäykset
eivät aina ole välttämättömät, mutta useimmissa tapauksissa niiden käyttö on suo-
siteltavaa.

4.4.3 Alustaminen ja aineiston esikäsittely

Esikäsittelyn yhteydessä luodaan pohja myöhemmälle aineiston työstölle. Koska me-
netelmää sovelletaan tilanteissa, joissa halutaan löytää erilaiset toimintapisteet, voi-
daan toimintapisteitä kuvaamattomat ylimääräiset piirteet suodattaa pois. Kuvassa
4.4 esitetään kaavamaisesti aineiston esikäsittely.

Kuva 4.4: Alustamisen vaiheet. Ensimmäisessä vaiheessa järjestelmälle syötettävistä
komponenteista poistetaan hitaasti muuttuvat piirteet. Seuraavaksi kompo-
nenttien välinen lineaarinen korrelaatio poistetaan. Viimeisessä vaiheessa si-
sääntulevat komponentit valkaistaan. [20, muokattu]

Järjestelmälle syötettävissä komponenteissa voi esiintyä hitaita piirteitä, jotka muut-
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tavat aineiston keskiarvoa ajan suhteen. Nämä hitaat piirteet voidaan löytää käyt-
tämällä hitaiden piirteiden analyysiä (Slow Feature Analysis) [28]. Tämän jälkeen
hitaasti muuttuvat piirteet voidaan poistaa syötettävästä aineistosta.

Mikäli aineistossa esiintyy joidenkin komponenttien välillä aina lineaarista korre-
laatiota, poistetaan lineaarinen korrelaatio ennen seuraavaa vaihetta. Lineaarinen
korrelaatio itsessään ei sisällä informaatiota muuttujien toimintapisteistä. Mikäli
korrelaatiossa tapahtuu muutoksia, on informaatio sen sijaan arvokasta; erilainen
korrelaatio saattaa olla ominaista tietyssä toimintapisteessä.

Aineiston komponentit voidaan tämän jälkeen valkaista. Valkaisu kuvataan mate-
maattisesti operaationa, jossa aineisto käsitellään siten, että sen kovarianssimatriisi
on yksikkömatriisi [28]. Käytännössä operaatio voidaan tulkita siten, että muuttu-
jissa tapahtuvat muutokset ovat samassa asemassa, vaikka reaalimuutos olisi ollut
huomattavan suuri.

Näiden muokkausten jälkeen aineistoon voidaan tarvittaessa lisätä epälineaarinen
komponentti. Epälineaarinen komponentti näkyy yhtenä toimintapisteenä, joka voi-
daan asettaa alkuarvoksi hakiessa muita toimintapisteitä. Tämän operaation on ha-
vaittu nopeuttavan huomattavasti toimintapisteiden löytämistä.

4.4.4 Menetelmän 1. ilmentymä

Menetelmän ensimmäisessä ilmentymässä pyritään erottamaan toimintapisteiden
vaihtuminen ja niiden sijainnit annetuista muuttujista. Tämä ilmentymä vastaa hy-
vin pitkälti aikaisemmin esiteltyä menetelmän toimintaperiaatetta yksinkertaisessa
tilanteessa.

Esikäsitellyille signaaleille toteutetaan ulkotulo (kaava 4.9). Saadun matriisin kukin
rivi ja sarake sisältää koko toisen aineiston kerrottuna yhdellä toisen aineiston ar-
voista. Mikäli aineisto on valkaistu, korostavat vaihtelut toisiaan samassa "mittakaa-
vassa". Näiden vaihtelujen tunnistaminen voidaan tehdä pääkomponenttianalyysilla
kuten aiemmassa esimerkissä. Vaihtelut voidaan toteuttaa myös tutkimalla lokaalia
varianssia, käyttämällä lineaarista hitaiden piirteiden analyysiä (Linear Slow Featu-
re Analysis) tai soveltamalla kanonista korrelaatioanalyysiä. Käytettävä menetelmä
riippuu oletetusta muutoksen luonteesta.

Piikit lokaalissa varianssissa indikoivat muutosta toimintapisteessä. Myös selkeästi
erilaiset paikalliset varianssit antavat viitteitä erilaisesta toimintapisteestä. Kano-
nisella korrelaatioanalyysillä voidaan etsiä jonkin ulkotulolla saadun aineiston ja
jonkin aineistoon liittyvän muuttujan välistä korrelaatiota.

Menetelmiä voi myös yhdistellä. Pääkomponenttianalyysilla löydetyille vektoreille
voidaan projisoida aineisto, jonka jälkeen lokaalia varianssia voi tutkia matalaulot-
tuvuuksisessa avaruudessa.
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4.4.5 Menetelmän 2. ilmentymä

Menetelmän toinen ilmentymä ratkaisee esimerkissä esiintyneen ongelman suures-
sa ulottuvuusmäärän kasvussa. Ulkotulon ottamisen sijaan menetelmässä pyritään
hakemaan aineistosta muutoksia iteratiivisella menetelmällä suoraan projisoimal-
la aineistoja toisilleen. Ilmentymän lopputuloksena saadaan molempia sisääntuloja
vastaavat ulostulot, jotka on pyritty projisoimaan hypertasoille. Hypertasot muotou-
tuvat iteroinnin myötä siten, että niille projisoidut vektorit kuvaavat muuttunutta
toimintapistettä. On syytä havaita tämän vastaavan huomattavan paljon luvussa 3
esiteltyä kanonista korrelaatioanalyysia. Menetelmän toinen ilmentymä on esitetty
kuvassa 4.5.

Verrattuna tavalliseen kanoniseen korrelaatioanalyysiin vaiheiden 3 ja 4 välissä rat-
kaistaan paikallinen korrelaatio, joka ilmaisee aineistojen vastinalkioiden välistä kor-
relaatiota funktion tietyllä arvolla. Paikallinen korrelaatio ρ on ratkaistavissa, mikäli
aineiston muuttujien paikalliset varianssit ja kovarianssit ovat tunnettuja:

ρ(t) =
c(t)√

va(t)
√
vb(t)

, (4.10)

jossa c(t) kuvaa aineiston vastinvektorien paikallista kovarianssia, va vektorin a(t)
paikallista varianssia ja vb(t) vektorin b(t). Kovarianssin ratkaisemista varten ai-
neistojen väliset vastinalkiot kerrotaan keskenään. Tulossa muodostetun aineiston
paikallinen varianssi kuvaa paikallista kovarianssia. On syytä havaita, että otettaes-
sa varianssia yksittäisestä pisteestä saadaan varianssiksi 0, sillä yksittäinen aineis-
ton piste ei sisällä vaihtelua. Paikallinen varianssi tulee sen sijaan estimoida. Tämä
voidaan tehdä esimerkiksi tutkimalla muutoksia ajanhetken t ympäristössä. Tämä
voidaan tehdä myös alipäästäsuodattamalla (Low-Pass Filter, LPF) aineiston ne-
liötä. Paikallinen kovarianssi ratkeaa vastaavasti alipäästösuodattamalla keskenään
alkioittain kerrottuja aineistoja.

Käsiteltäessä kanonista korrelaatioanalyysiä oletettiin vertailtavien aineistojen koos-
tuvan ajallisesti tai tilallisesti muuttuvista piirteistä. Tätä indikoitiin kuvaamalla
kaikkia muuttujia funktioina muuttujan t suhteen. Samalla todettiin myös ulostu-
loarvojen olevan funktiomuotoisia. Yhdistämällä funktiomuotoisuus paikallisen kor-
relaation kanssa saadaan oiva työkalu eri toimintapisteiden tunnistamiseen; mikäli
paikallinen korrelaatio muuttuu jossakin pisteessä merkittävästi, ovat muuttujien
suhteet muuttuneet, mikä viestii mahdollisesta toimintapisteen vaihtumisesta.

Paikallista korrelaatiota käytetään lisäksi uusien projektiomatriisien muodostami-
seen kertomalla projisoidut arvot arvoja vastaavilla paikallisilla korrelaatioilla. Tä-
mä voidaan käsittää siten, että itseisarvoltaan suuri paikallinen korrelaatio ohjaa
projektiota tiettyyn suuntaan. Vastaavasti itseisarvoltaan pienet lokaalin korrelaa-
tion arvot pienentävät vastaavien muuttujien merkitystä jatkossa.
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Kuva 4.5: Toimintapisteiden tunnistaminen iteratiivisella proseduurilla. Vertailtavista ai-
neistoista poistetaan hitaat komponentit, jolloin aineiston keskiarvo pysyy va-
kiona eri näytteiden välillä. Tämän jälkeen suorat lineaariset riippuvuudet
aineistojen välillä poistetaan, minkä jälkeen aineisto valkaistaan. Valkaistut
vertailtavat aineistot projisoidaan hypertasolle kertomalla aineisto WX :llä tai
WY :llä. Projisoitujen aineistojen välinen paikallinen korrelaatio ratkaistaan
paikallisen varianssin ja paikallisen kovarianssin avulla (LPF, Low-Pass Fil-
ter, kuvaa alipäästösuodattamista). Paikallisella korrelaatiolla kerrotaan proji-
soidut aineistot. Käyttämällä tulon muodostamaa korjattua aineistoa muodos-
tetaan uudet projektiomatriisit WX :llä ja WY . Luvussa 4.4.5 kuvataan mene-
telmä tarkemmin. [20, muokattu]
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Kuva 4.6: Koneoppimisjärjestelmä, joka hyödyntää esiteltyä kehittämää menetelmää toi-
mintapisteiden tunnistamiseen. Vasemmalla kuvataan sisääntulevia signaale-
ja, jotka syötetään koneoppimisjärjestelmälle. Koneoppimisjärjestelmän ensim-
mäisessä erotetaan hyväksyttävät arvot kelpaamattomista (kuvassa vaihe otan-
ta). Kelpuutetut arvot esikäsitellään ja käsitellään. Tuotetut arvot tulkitaan
vastaanottavassa laitteessa. Mallinnusmoduulissa muodostetaan vastinesignaa-
li, joka näkyy vastesignaalina. [20, muokattu]

4.4.6 Jälkikäsittely

Aineiston jälkikäsittely voi sisältää hyvin erilaisia toimenpiteitä. Tavoitteena on saa-
da aineistosta mahdollisimman selkeää ja helposti tulkittavaa. Menetelmässä esi-
tetään aineiston jälkikäsittelyn koostuvan normalisoinnista, ortogonalisoinnista ja
ulottuvuuksien vähentämisestä.

Näiden lisäksi menetelmää käytettäessä voidaan useita muitakin operaatioita toteut-
taa. Mikäli menetelmän tulos kuvaa ryhmittynyttä aineistoa, voidaan aineiston ryh-
mät erottaa odotuksen maksimointi (Expectation Maximization, EM) tai k-means
-algoritmilla. [1, sivut 135-144]

4.4.7 Koneoppimisnäkökulma

Mikäli aineisto sisältää viitteitä toimintapisteiden läsnäolosta, algoritmi todennäköi-
sesti löytää ne. Sen sijaan menetelmän tulkitseminen saattaa edellyttää asiantunti-
jaa, mikä ei kaikissa tilanteissa ole kuitenkaan hyvä. Tämän takia joitakin valmiita
suunnitelmia menetelmän käytölle on perinteisten koneoppimismenetelmien kanssa.
Vaikka perinteiset koneoppimismenetelmät yleensä epäonnistuvat toimintapisteiden
määrittämisessä, saattavat ne soveltua hyvin opitun toimintapisteen hyödyntämi-
seen kuten havaittiin luvussa 2. Kuvassa 4.6 esitetään kaavamainen esimerkki ko-
neoppimisjärjestelmästä.

Esitelty algoritmi saa arvot jostakin ilmiöstä. Otanta-vaiheessa poistetaan suoraan
selkeästi epäkelvot näytteet. Tämän vaiheen merkitys korostuu luonnollisen ilmiön
ollessa kyseessä, sillä anturin antama virheellinen arvo on syytä automaattisesti jät-
tää pois. Aineisto esikäsitellään ja käsitellään luvussa kuvatuilla menetelmillä. Saatu
signaali saattaa sisältää tietoa nykyisestä toimintapisteestä tai sen muuttumisesta.
Tämä riippuu käytetystä menetelmäyhdistelmästä. Signaali syötetään sisääntuloar-
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vona seuraavalle käsittelijälle, joka muokkaa sen sopivaksi mallinnusmoduulia varten.
Mallinnusmoduuli tuottaa vastesignaalin, joka voi näkyä järjestelmän ulkopuolella
esimerkiksi ohjaussignaalina.



Luku 5

Yhteenveto ja pohdinta

Tutkielmassa on nähty toimintapisteisiin pohjautuvan ajattelun voima. Maailman
voidaan nähdä koostuvan erilaisista toimintatiloista, joita on kandidaatintyön aika-
na nimitetty toimintapisteiksi. Intuitiivisesti ongelma ei vaikuta ihmismielelle haas-
tavalta. Ihmismieli kykeneekin löytämään välittömästi sopivan käyttäytymisen. Tä-
män ajattelun valjastaminen tietokoneelle on ollut tavoitteena jo pitkään, mutta
vasta muutaman viime vuoden aikana on otettu merkittäviä edistysaskelia. Työssä
käsiteltiin sekä toimintapisteiden käyttöä että niiden hakemista koneoppimismene-
telmin.

Luvussa 2 todettiin tunnettujen toimintapisteiden käytölle olevan tiedossa useita
esimerkkejä. Kirjallisuuden havaittiin myös sisältävän useita erilaisia käytännön so-
velluksia, jotka edellyttivät toimintatilojen tunnistamista tai käyttöä ilman ulkoista
asiantuntijaa. Luvussa tutustuttiin muutamaan merkittävään koneoppimismenetel-
mään, joista kukin omasi erilaiset lähtöoletukset ja käyttökohteet; täten menetel-
mien paremmuudesta ei voida tehdä suurta analyysiä. Asiantuntijain kirjo muun-
nelmineen sallii yksinkertaisen veräjäverkon toimintapisteen määrittämiseen. Heik-
koutena menetelmä huomioi vain sillä hetkellä saadun näytteen tutkimatta edellistä
toimintapistettä. Tämän heikkouden korjasi piilotetun Markovin mallin muunnelma,
sisään-ulos piilotettu Markovin malli, joka kouluttamisen jälkeen vaihtoi toiminta-
pistettä vain tietyllä todennäköisyydellä ja silloinkin riippuen sisääntuloarvoista. Li-
säksi luvussa 2 laitettiin merkille kirjallisuudesta löytyneet viitteet hippokampuksen
ja aivokuoren merkityksestä erilaisten toimintatilojen tunnistajina.

Toimintapisteiden tunnistamista ja oppimista käsiteltiin syvällisemmin luvussa 4.
Luvussa esiteltiin neljä merkittävää lähestymistapaa. Ensimmäisessä lähestymista-
vassa ihmisen osaaminen valjastettiin toimintapisteiden hakuun. Tällöin ihminen
määritteli erilaiset toimintapisteet, joita voitaisiin hyödyntää luvussa 2 esitettävillä
menetelmillä. Toisessa lähestymistavassa käytettiin Ronald Memisevicin ja Geo�rey
Hintonin kehittämää veräjöityä ehdollista rajoitettua Boltzmannin konetta aineis-
ton muutosten havaitsemiseen. Menetelmä oli suunniteltu ohjaamattomaan kuvan-
muutosten tunnistamiseen, mutta luvussa havainnollistettiin sen merkitystä myös
toimintapisteiden haussa. Menetelmän todettiin kykenevän havaitsemaan kahden
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tilan välillä esiintyvät muutokset. Muutokset itsessään indikoivat toimintapisteel-
le ominaista käyttäytyimstä, kun taas muutoksissa esiintyvät muutokset indikoivat
toimintapisteen vaihtumista. Kolmas menetelmä oli varsin erilainen suhteessa edel-
liseen. Siinä käytettiin puolirajoitettuja Boltzmannin koneita syvän uskomusverkon
rakenneosina. Syvän uskomusverkon ylimmät neuronit taasen sopivalla koulutuk-
sella saattoivat ilmaista yleisellä tasolla alemman tason mutkikasta toimintaa. Nel-
jäs lähestymistapa koostui ZenRobotics Oy:n patentoimasta menetelmäkirjosta, jo-
ka kykeni tunnistamaan toimintapisteen vaihtumisen ja tunnistamaan järjestelmän
käyttäytymisen toimintapisteessä.

Ihmisen päättäessä toimintapisteet pysytään varsin kaukana varsinaisesta oikeas-
ta toimintapisteiden automaattisesta oppimisesta. Sen sijaan kolme muuta esiteltyä
menetelmää kykenevät tunnistamaan muuttuneet toimintapisteet ja toimintapistei-
den jälkeiset käyttäytymiset aineistolähtöisesti ilman mitään ennakkotietoa aineis-
tosta. Menetelmien välillä ei työn aikana suoritettu varsinaista vertailua, eikä mene-
telmien puolueeton vertailu ole todennäköisesti mahdollista; menetelmät sisältävät
paljon muokattavia osia, jotka riippuvat käyttötarkoituksesta.

Veräjöity Boltzmannin kone kykenee havaitsemaan toimintapisteen muuttumisen
reaaliajassa. Mikäli ennuste ei vastaa odotettua riittävästi, on toimintapiste toden-
näköisesti muuttunut. Tällä tavoin käytettynä veräjöity Boltzmannin kone nojautuu
Gibbs-otantaan, joka on iteratiivinen ja suoritusaikaa vaativa. Valmiin aineistonkin
tapauksessa menetelmän käyttö tällä tavoin on hidasta.

Puolirajoitettujen Boltzmannin koneiden ja syvien uskomusverkkojen käyttö mah-
dollistaa hyvin nopean päättelyn saaduista arvoista. Päättely voidaan suorittaa ti-
lastollisesti todennäköisyyslaskennan keinoin, mikä on suuri etu muihin menetelmiin
nähden. Nopea päättely on kuitenkin mahdollista vain järjestelmän kouluttamisen
jälkeen. Täten päättelyä varten järjestelmälle tulee syöttää laajasti aineistoa kou-
lutusta varten, mikäli päättelyn haluaa tehdä etukäteen. Mikäli päättelyn haluaa
toteuttaa kerätylle aineistolle, saadaan parhaimmillaan järjestelmän eri toiminta-
pisteet esille vain tutkimalla ylintä piilotettua neuronien tasoja.

ZenRobotics Oy:n patentoima menetelmä on varsin kiinnostava poikkeama näistä
kahdesta. Menetelmä koostuu useista tunnetuista tilastotieteen menetelmistä, jotka
lopulta paljastavat toimintapisteen muutokset.

Voidaan todeta toimintapisteiden tunnistamisen ja käytön vaatimien perustyökalu-
jen olevan olemassa. Erityisesti toimintapisteiden tunnistamiseen soveltuvilla mene-
telmillä tuotetut käytännön sovellukset ovat vähäisiä, mutta työssä esitellyt esimer-
kit eri käyttötapauksista osoittavat menetelmiin pohjautuvan potentiaalin.
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