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Abstract

Neurophysiologic time series are quasiperiodic: The time series consist of transient
neural oscillations at varying frequencies. Although the oscillations operate on dif-
ferent frequency bands, the bands are functionally different. Therefore, directional
metrics can be considered as a natural approach to research the activity on different
frequency bands of the neurophysiologic data.

Synchronization of phase difference distribution has been used as an indicator of
interaction between brain regions. Detecting the synchronization from EEG, LFP
and MEG data can be done with several indices. However, these indices cannot
reveal the direction of the information flow. In addition, these measures produce
false-positive results in cases where the history of previous activity could reveal that
the behavior should be considered natural.

This report extends the frameworks of predictive information and transfer entropy to
directional metrics. The measures are tested using artificial simulated data in order
to study their performance and sensitivity in different conditions. The simulation
results show that the measures are able to distinguish the direction of information
flow properly in noiseless conditions. Common artifacts have only minor effect to
the results. Artificial volume conduction is noted to affect significantly to the re-
sults. However, with proper choice of parameters, transfer entropy can be considered
reliable.

Surrogate data is often applied for determining the confidence intervals using the
data itself. The results indicate that a commonly used surrogate method produces
surrogate data which gives poor confidence interval estimates for phase locking value.
This makes phase locking value based analyses vulnerable for false positive results.
The results show that the surrogate method can be applied for predictive information
and transfer entropy in order to determine the confidence intervals.

Common artifacts and artificial volume conduction had only minor effects to the
sensitivities of predictive information and transfer entropy. The sensitivities of new
methods are comparable to the sensitivity of phase locking value.
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1 Introduction

The active brain networks can be studied in a number of different approaches. Some ap-
proaches rely on studying the stability of the phase difference distribution between two
brain regions of electrophysiological brain signals [1–4]. Providing that there is an inter-
action between the regions, the activation delay should be approximately constant. As
networks usually are active relatively long periods, a network activation can be seen as
the stability of the phase difference distribution. The brain signals are oscillatory - having
both phase and amplitude for each time index - making the phase presentation natural.
There is also a wide variety of methods that utilize the hemodynamics of the brain for
finding brain networks [5].

Although phase difference synchronization provides a good basis for determining the in-
teraction between brain regions, it has several drawbacks. Obviously, the approach cannot
offer information about the direction of interaction. More problematic issue is the possibil-
ity to generate false positive results in cases, where two channels simply happens to produce
similar phase difference distribution with a small time lag. The issue can be demonstrated
with a simple watch example: If only the synchronization of phase difference distribution is
considered, all watches are synchronized! In order to study the real interaction between the
brain regions, the method for determining the interaction should observe also the history
of both brain regions. Thus, the interaction should be studied through phase causality
rather than phase difference synchronization.

In neuroinformatics, The Granger causality test [6] is a traditional method for determining
the causal relations of time series. The test investigates whether information provided by
one channel helps to predict data on another channel. Although the Granger causality test
provides means for determining the causal relation, it is usually applied only in linear case,
which makes analysis in nonlinear cases troublesome. This approach has been extended to
directional metrics [7].

Dynamic Causal Modeling is often applied in hypothesis-led research where a hypothetical
model is tested against the measured data [8]. The method is capable to show the incor-
rectness of the model, but incapable to show the correctness of the model. The concept of
DCM is extended to explorative analyses, but it is demonstrated only using fMRI data [9].

Information theory [10] provides an interesting concept for studying the causality. Pre-
dictive information (PI) is defined as the mutual information (MI) between the past of
the first time series and the present of the second time series [11]. In principle, predic-
tive information studies the common features between the past of the first time series
and the present of the second time series. Predictive information is not bound to linear
analyses, but the measure detects also non-linear relationships in the data. Although the
method can be useful, it does not observe the past of the target time series making the
method vulnerable for false positive results. Predictive information is applied in causality
analyses [12].
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As in predictive information, also transfer entropy (TE) utilizes information theory in
causality analyses [13]. Transfer entropy utilizes also the information about the past of
target the time series and the method has been found to perform reliable for linear and
non-linear data [14]. Simulations have shown that mixing do not affect the measure sig-
nificantly in real valued case. Thereby, transfer entropy offers an interesting starting point
for developing a causality measure in directional metrics.

Transfer entropy can be presented as conditional mutual information (CMI), which allows
conditioning the variables in interest by other factors [15]. The basic concept is similar to
mutual information: The measure allows studying the similarity between two data sets.
In addition, CMI allows excluding effects of affecting variables. In the case of transfer
entropy, the affecting variable is simply the past of the target time series. Similar method
has been used in analysis of epileptogenic brain connectivity [16].

Although information theory provides a good basis for causality analyses, it has been
applied only for real valued data. Brain signals are oscillatory, thus real valued data may
not be the best approach for determining the causality. This report extends the concept of
predictive information and transfer entropy into phase domain and performs several tests
for the extended measures. These measures are compared to phase locking value [1], which
is a common method in connectivity analyses. First, the report presents the basic concept
of mutual information for time-lagged variables. Second, the concept is extended into the
case where the mutual information can be given the information of other variables. Finally,
The measure is demonstrated using artificial simulated data.
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2 Methods

This chapter introduces the methods that are required to apply causality analyses in direc-
tional metrics. The analyses follow mainly the workflows shown in figure 1. The workflow
can be divided into three parts: The first part (black route in the figure) shows the anal-
ysis of the interaction data. The data is filtered and the interaction is estimated using an
interaction index. The second and third flows are related to the estimation of confidence
intervals. The second flow (blue route in the figure) shows the surrogate data generation
and confidence interval estimation. This route is used always when dealing with the real
data.

The third route is available only in simulations. The third route estimates the confidence
intervals directly from data that is known to have no interactions, which makes the esti-
mates much more accurate compared to the estimates from the surrogate data. Despite
this approach cannot be used for the real data, the approach is useful for determining the
accuracy of confidence interval estimates.

This chapter is organized as follows: First, the simulation data generation and filtering
steps are introduced. Second, the report introduces phase-locking value, which is applied
often in connectivity analyses. Third, a histogram of the filtered data is created in order
to refine the data. As the data is processed in directional metrics, this processing step
is performed in an unusual manner. Fourth, the basic concepts of information theory,
predictive information and transfer entropy are introduced. Finally, the report describes
surrogate method, which is used to estimate the confidence intervals from the data.

Figure 1: Workflow of analyses for simulated data. There are two different methods for
estimating the confidence intervals: The red route uses simulated noise as the reference.
The blue route creates the noise data using surrogate method and estimates the confidence
intervals from the surrogate data.

2.1 Simulation Data Generation

Artificial simulated data is useful for several purposes. The simulated data can be used to
verify the operation of the algorithm and the implementation. In addition, it can be used
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for comparing differences between different metrics.

The simulated data is generated by first creating artificial white noise for all channels in
the simulation. The white noise on all channels is used as the initial data. The initial data
is then mixed in order to create artificial links over some channels:

xiinteracted(n) = xioriginal(n) +
K∑

j=1;j 6=i

αj→ix
j(n− τj), (1)

where i denotes the target channel, j source channel, K number of all channels and αj→i
denotes the interaction strength and τj time lag.

The data is mixed in order to simulate the effect of volume conduction:

xivc(n) = xiinteracted(n) +
K∑

j=1;j 6=i

αjx
j(n), (2)

where αj denotes the constant mixing between the channels i and j.

The physiological time series may have different contaminations (e.g. cardiac or muscular),
which can be seen in all channels virtually simultaneously. This effect is simulated by
adding same noise to all channels:

xi(n) = xivc(n) + ε, (3)

where ε denotes the additive noise.

2.2 Preprocessing

The data in each measurement channel is filtered with Morlet wavelet, which filters and
transforms the data into time-complex -representation [17]. The complex representation
can be further studied using directional metrics, where the signal consists of phase θ and
amplitude A. However, information about the amplitude is not in interest, thus each
sample in the data is normalized. The data is denoted simply as θch(n), where ch denotes
the channel and n the sample index of a single sample.

2.3 Phase Locking Value

Phase Locking Value (PLV) is a traditional measure for the stability of phase difference
distribution. The measure is defined as:

PLV =
|
∑N

n=0 e
i(θi(n)−θj(n))|
N

. (4)
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where θi(n) denotes the phase of the filtered signal on channel i at sample index n. Simi-
larly, θj(n) denotes the phase of the filtered signal on channel j at sample index n. [1]

The explanation of the definition is quite simple: If the channels are not phase locked,
the phase difference distribution is random. Consequently, the length of the sum vector
is small. If the channels are phase locked, the length of the sum vector will be near N
making the value of PLV near 1.

2.4 Histogram Estimation

The distribution of the directional data is estimated using histogram estimation. In his-
togram estimation the interval from data minimum to data maximum is divided into certain
number of bins each of which represent simply a class of the data. Computationally this
method is efficient and simple to implement. However, the number of bins affects much
to the shape of probability distribution: the real distribution disappears if the number of
bins is too small. On the other hand, if the number of bins is too large, each bin will be
occupied by only few samples, which can lead to wrong conclusions.

In the directional case, the interval [−π π] is divided into bins. Scott’s choice [18, Chapter
3.2] is utilized for determining the length of a single bin:

hch =
3.5σch

N
1
3

, (5)

where hch denotes the length of a bin for channel ch, N the number of samples and σch

the standard deviation of the samples. The standard deviation for a directional variable is
defined as [19, Chapter 2.3]:

σch =

√
−2 ln(Rch) =

√√√√−2 ln(| 1
N

N∑
t=1

ei∗θch(n)|), (6)

where Rch denotes the sample mean resultant vector. When the bin length hch is available,
it is straightforward to determine the number of bins:

kch =
2π

hch
. (7)

After the number of bins for each channel is determined, the data is simply categorized
into different bins. The probability of group i on channel ch is denoted simply by p(θchi ).
This categorization will be later used when the joint probability of simultaneous activation
between channels is considered.
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2.5 Information Theory in Directional Metrics

Information theory offers an interesting approach for determining (dis)similarity of vari-
ables and data sets. Throughout this report the information theory is utilized in phase
domain. In addition, this report introduces the notation that is noted to be proper.

This chapter is organized as follows: First, the basic concepts in information theory are
reviewed starting from the definition of information up to conditional mutual information.
These concepts are then utilized in predictive information and transfer entropy.

2.5.1 Definition of Information

Previously is shown the categorization of the data using histogram estimation. Let us
consider the information content of a single category. If samples from a category are
present frequently, observing a sample belonging to the category does not carry much
information: observing the sample is nothing special. On the other hand, if the category
is present extremely rarely, samples belonging to the category carry much information.
This gives the basis for the information content in the information theory. Formally, the
information content is defined as [10]:

I(θchi ) = − log(p(θchi )). (8)

2.5.2 The Shannon Entropy

The Shannon entropy describes the expected information content of all categories [10]:

H(θch) = E(I(θch)) = −
G∑
g=1

p(θchg ) log p(θchg ), (9)

whereG denotes the number of possible categories. Thus, the entropy explains the likeliness
to observe an unlikely sample. It should be emphasized that the entropy is not a probability
as itself: entropy is not bound to interval [0 1]. The entropy can be extended to bivariate
case:

H(θx, θy) = E(I(θx ∪ θy)) = −
G∑
g=1

F∑
f=1

p(θxg , θ
y
f ) log p(θxg , θ

y
f ), (10)

where p(θxg , θ
y
f ) denotes the joint probability over groups g on channel x and f on channel

y. In other words, p(θxg , θ
y
f ) refers to the probability to observe data belonging to group

g at the same time as data belonging to group f is observed on the second channel. The
entropy can be extended to multivariate case in a similar fashion.
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2.5.3 Mutual Information

Let us now consider a case where the probability p(θyf ) = p(θxg ) and p(θyf |θxg ) equals to 1. It
is trivial to show that H(θxg ) and H(θyf ) are identical. In addition, it is trivial to show that
H(θx, θy) is also identical to the entropies. Thus, there is a clear connection between the
probability distributions and the joint entropy. The connection is called mutual information
(MI) and it is defined as the amount of information that is dependent between variables
θx and θy [10]:

I(θx ∩ θy) = E(log(p(θx, θy)))− E(log(p(θx)p(θy)))

= E(log(
p(θx, θy))

p(θx)p(θy)
). (11)

The mutual information can be represented by entropies thereby making the measure
computationally convenient:

I(θx ∩ θy) = E(log(p(θx, θy)))− E(log(p(θx)p(θy)))

= E(log(p(θx, θy)))− E(log(p(θx)))− E(log(p(θy)))

= H(θx) +H(θy)−H(θx, θy). (12)

If the variables θx and θy are independent, the mutual information equals to 0. On the
other hand, if there is a large dependency between the variables, the conditional entropy
H(θx|θy) is small and the mutual information I(θx∩ θy) equals to I(θx). Thus, the mutual
information can be used to measure the relationship between variables θx and θy. The
relation between entropy and mutual information is illustrated in figure 2a. [10]

2.5.4 Conditional Mutual Information

Conditional mutual information is defined as the mutual information given the variable
θz [15]:

I(θx ∩ θy|θz) = E(log(p(θx, θy|θz)))− E(log(p(θx|θz)p(θy| θz)))

= E(log(
p(θx, θy)|θz)

p(θx|θz)p(θy|θz)
). (13)

The conditional mutual information can be represented by entropies similarly as the mutual
information:

I(θx ∩ θy|θz) = E(log(p(θx, θy|θz)))− E(log(p(θx|θz)p(θy| θz)))
= E(log(p(θx, θy|θz)))− E(log(p(θx|θz)))− E(log(p(θy| θz)))

= E(log(
p(θx, θy, θz))

p(θz)
)− E(

log(p(θx, θz))

p(θz)
)− E(

log(p(θy, θz))

p(θz)
)

= E(log(p(θx, θy, θz)))− E(log(p(θx, θz)))− E(log(p(θy, θz)))

+E(log(p(θz)))

= H(θx, θz) +H(θy, θz)−H(θz)−H(θx, θy, θz) (14)

9
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a) b)

Figure 2: The relation between entropy, mutual information and conditional mutual infor-
mation. a) shows the relation between entropy and mutual information. I(θx, θy) can be
considered as the similarity between variables θx and θy. b) shows the relation between
variables θx and θy given knowledge of θz. I(θx, θy| θz) includes mutual information of
variables θx and θy by given the variable θz.

If the variable θx or θy is dependent on variable θz, the effect of variable θz will not be
considered in the conditional mutual information. Similarly, if the variables θx and θy are
independent of θz, the conditional mutual information will reduce into mutual information.
The relation between entropy, mutual information and conditional mutual information is
illustrated in figure 2b.

2.5.5 Predictive Information

This far we have discussed about measuring the dependencies between channels using
mutual information. This idea can be extended to predictive information by calculating
the mutual information between one time series and the past of another time series [11].
The predictive information is defined as measure I(θx∩θy′

), where the values on the channel
y are time lagged. This can be refined even more informative similarity index by utilizing
predictive information to both directions:

SIPI = I(θx ∩ θy′
)− I(θy ∩ θx′

). (15)

The similarity index thereby will be either positive or negative depending on the direction
of information flow.

Although the predictive information is able to find correlations between two time series,
the information about the past of the first time series is not utilized. Thus, the positive
result does not guarantee the causality.

10
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2.5.6 Transfer Entropy

Transfer entropy utilizes the past of both time series and the present of the target time
series in order to determine the causality between the two time series. The measure is
defined as [13]:

IY→X = E(log(
p(θx|θx′

, θy
′
)

p(θx|θx′)
)). (16)

Clearly, the transfer entropy describes the relative amount of information that the past
of channel y ”adds” to the prediction. As an interesting feature, transfer entropy can be
represented as a conditional mutual information:

IY→X = E(log(
p(θx|θx′

θy
′
)

p(θx|θx′)
))

= E(log(
p(θx, θx

′
, θy

′
)p(θx

′
)

p(θx, θx′)p(θx′ , θy′)
))

= E(log(
p(θx, θx

′
, θy

′
)p(θx

′
)

p(θx, θx′)p(θy′ , θx′)
))

= I(θx ∩ θy′ |θx′
), (17)

where values of y′ and x′ are time lagged values of x and y.

In other words, transfer entropy describes the mutual information between the past of the
first time series and the present of the second time series given the past of the second time
series. The similarity index for transfer entropy can be defined as:

SITE = I(θx ∩ θy′|θx′
)− I(θy ∩ θx′|θy′

). (18)

The notation is practical as the measure can be extended by adding condition variables.
This feature becomes an useful property when dealing with physiological time series: The
effect of disturbing factors (e.g. volume conduction, eye blinks) can be suppressed by
adding a conditioning variable representing the disturbing factor. This approach has been
applied for real valued data in [11] and [16].

2.6 Estimating Confidence Intervals with Surrogate Data

The surrogate data is useful for determining confidence intervals from the data. Each
channel in the surrogate data has the same autocorrelation function as the corresponding
real data, but the correlations over channels are removed. In other words, the surrogate
data can be considered as ”good noise” in connectivity analyses. Everything that a measure
gives for surrogate data can be considered natural. Thus, the surrogate data can be used
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to determine the confidence intervals for the noise. If the method produces value that is
outside the confidence intervals, the result can be considered statistically significant. [20]

The surrogate data can be generated by choosing random data fragments from each chan-
nel [1, 20]. This operation removes correlations between channels while preserving the
autocorrelation within each channel. However, the method do not remove only the real
interactions between the channels, but also the effect of volume conduction and common
artifacts. Therefore, the surrogate data is free of volume conduction and common artifacts,
which affects to the confidence interval estimates.

2.6.1 Specificity of Surrogate Method

Although the surrogate method may give wrong estimates for the confidence intervals,
the goodness of the surrogate method for the measure in interest can be estimated with
simulations. Let us consider simulated data with artificial volume conduction and common
artifacts, but with no interactions. This data can be used to determine the real confidence
intervals for the data. The surrogate method can be applied for the noise data in order to
estimate the confidence intervals that the surrogate data would produce.

The goodness of surrogate method for the measure in interest can be computed by creating
several surrogates of the noise data. The surrogates are used to estimate of confidence
intervals for the data. The original data should always belong to the confidence interval,
because no interactions are present in the data. The specificity is defined as the percentage
of the measure values that belonged to the estimated confidence interval. If the specificity
is low, the surrogate method produces data, which gives poor confidence interval estimates.

2.6.2 Estimating Sensitivity with Surrogate Data

Simulations and surrogate data can be utilized for estimating the sensitivity of the measure
in interest. However, it is equally important to validate that the method can produce
statistically significant results.

Let us consider simulated data with interactions. The confidence intervals can be estimated
from the data using surrogate method. Because we already know that the simulated data
has interactions, the measure should always differ significantly from the surrogate data.
The sensitivity is defined as the percentage of detected interactions.

12
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3 Results

The data analysis was performed using both predictive information and transfer entropy.
Simulations and analyses were performed in different conditions each of which had different
parameter values for interaction lag and mixing strength. Each simulation consists of 5000
samples. The results presented at this chapter have been averaged over 100 trials. The
simulated data was Morlet filtered (f0 = 10Hz, m = 5, fs = 100Hz).

3.1 Determining the Causality

In order to determine the significance of a result, the method was applied for simulated
noise data having the same noise and mixing, but no real interactions between channels.
The 95% confidence interval from the simulated noise data is used for determining if a
result is statistically significant. It should be noted that this method is not identical to
surrogate data [1,20] as the volume conduction is not present in the surrogate data. Thus,
simulated white noise should give better estimate for the significance level.

Figure 3 shows the measure response as a function of coupling/mixing strength for pre-
dictive information (figure 3a), transfer entropy (3b) and phase-locking value (3c) when
interaction and analysis lags have value 8. The negative values denote interaction X → Y
and positive values interaction Y → X. Both analyses were performed without artificial
volume conduction or noise. The red horizontal bars show the 95% significance limits.
The yellow vertical bars show points where the measure crosses the 95% significance. The
size of the region between the lower and upper boundary is used as the goodness measure
in other figures; the smaller the region is, the better the measure is to distinguish the
direction.

The effects of using different analysis and interaction lags to the size of the insignificant
region are shown in figures 4 and 5. Figures 4a and 4b show the performance of transfer
entropy and predictive information in noiseless conditions. The response of phase locking
value for different interaction lags in noiseless conditions is shown in figure 5. The fig-
ures show that phase locking value, predictive information and transfer entropy perform
adequately in noiseless conditions.

3.2 Influence of Additive Noise and Mixing

The effect of applying additive noise of 0.05 is shown in figures 4c (predictive information),
4d (transfer entropy) and 5b (phase locking value). The figures show the response as a
function of interaction lag and analysis lag. The results show that additive noise has only
minor effect to the measures.
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Figures 4e (predictive information), 4f (transfer entropy) and 5c (phase locking value) show
the effect of volume conduction to the measures when the mixing coefficient has value 0.3.
Clearly, the mixing affects all measures: If the interaction lag is about 15 samples and
the analysis lag is small, the measures cannot reveal the true interaction. It should be
emphasized that these observed values did not include expected significant results.

Figure 6 shows the size of the insignificant region as a function of volume conduction while
using two different interaction lag values (10 and 15). The analysis lag had value of 10 in
all simulations. The figure shows that the effect of volume conduction is highly dependent
on the interaction and analysis lags. If interaction lag is 10, the measures tolerate volume
conduction adequately. However, if the interaction lag is 15, all tested measures perform
poorly.

Predictive information and causal information perform in a similar fashion in almost all
conditions. Strong interactions from X → Y are seen as negative responses in similarity
index and strong interactions Y → X as high positive responses. If the difference between
analysis lag and interaction lag is small, the response is stronger compared to situation
where the analysis lag differs much from the interaction lag. Volume conduction lowers the
response that is seen in similarity index.

3.3 Specificity analyses

This far the analyses are performed using known confidence intervals. Confidence intervals
are never available for the real data, thus the intervals must be estimated from the data
itself. However, the estimates may be incorrect making the measure in interest vulnerable
for false positive results. Therefore, the accuracy of surrogate method must be validated
with simulated data.

Specificity of each measure was computed in different conditions. The estimated 95%
confidence intervals were computed using 100 surrogates from the noise data. The analysis
lag had value of 8 whereas no interactions were present during specificity tests. Figure 7
shows the specificity for predictive information, transfer entropy and phase locking value.
Figures show that the confidence interval is estimated correctly for phase locking value when
additive noise is present, but the confidence intervals are estimated incorrectly when even
little mixing is present. Predictive information shows good specificity when additive noise
is present and the specificity is not affected significantly by volume conduction. Transfer
entropy has good specificity in all conditions: additive noise and mixing affect only little
to the measure.

14
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3.4 Sensitivity analyses

Specificity shows the goodness to estimate valid confidence intervals from the data and
good specificity is a prerequisite for successful analysis. It is equally important to validate
that each measure actually can detect an interaction from the data. The sensitivity to
interactions were researched by running several simulations. The analyses related to sen-
sitivity were run using analysis lag 8 and interaction lag 8. The 95% confidence intervals
were estimated using 100 surrogates from the interaction data.

Figures 8a and 8b show the sensitivity in noiseless conditions for predictive information
and transfer entropy, respectively. Figure 9a shows the sensitivity of phase locking value
when neither additive noise nor mixing is present. The figures show the sensitivity at dif-
ferent couplings between the channels. Ideally the sensitivity should be 1 with all coupling
strengths, which would imply 100% detection given the surrogate that is generated from
the interaction data. However, the specificity usually drops when the interaction strength
between the channels is near zero.

The effect of additive noise is shown in figures 8c (predictive information), 8d (transfer
entropy) and 9b (phase locking value). The additive noise has only little effect to all
measures. Figures 8e (predictive information), 8f (transfer entropy) and 9c (phase locking
value) show the effect of mixing. Interestingly, mixing seem to even improve the sensitivity
of transfer entropy. Mixing does not have large effect to transfer entropy. Phase locking
value is virtually 100% sensitive, but it should be noted that the specificity of confidence
interval is extremely low for phase locking value at 0.3 mixing.
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a) b)

c)

Figure 3: The response of a) predictive information b) transfer entropy c) phase locking
value as a function of interaction strength. Negative strength refers to interaction X → Y
and positive strength to interaction Y → X. The analyses were performed using interaction
lag 8 and analysis lag 8. Noise or mixing was not present in the simulations.
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a) b)

c) d)

e) f)

Figure 4: The goodness of predictive information and transfer entropy measures as func-
tions of interaction and analysis lags. The goodness is measured as the difference in thte
coupling that is required for producing a significant result. The lower (darker) result is
better. The simulation result without volume conduction or noise for predictive informa-
tion is presented in a) and for transfer entropy in b). Figures c) and d) show the effect
of additive noise (amplitude 0.05) for predictive information and transfer entropy, respec-
tively. Figures e) and f) show the effect of mixing to predictive information and transfer
entropy, respectively. Mixing coefficient was set to 0.3.
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a)

b)

c)

Figure 5: The goodness of phase locking value as a function of interaction lag. The goodness
is measured as the difference in the coupling that is required for producing a significant
result. The lower result is better. The simulation result without volume conduction or
noise for is presented in a). Figure b) shows the same diagram when 0.05 additive noise
is present. Figure c) shows the effect of mixing to phase locking value. Mixing coefficient
was set to 0.3.
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a) b)

c) d)

e) f)

Figure 6: The size of the insignificant region as a function of mixing coefficient. a) and b)
show the behavior of predictive information when the analysis lag is 10 and the interaction
lag is 10 (a) or 15 (b), respectively. c, d, e and f show the behavior of transfer entropy (c,
d) and phase locking value (e, f) in a similar fashion. Each figure shows the average over
100 simulations.

19



T-61.5900 Special assignment Arto Meriläinen, 79221M

a) b)

c) d)

e) f)

Figure 7: The specificity of the measures. Figures a) and b) show the effect of artificial
volume conduction (a) and additive noise (b) to predictive information. Figures c, d, e, f
show the same tests for transfer entropy (c, d) and phase locking value (e, f).
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a) b)

c) d)

e) f)

Figure 8: Sensitivity of predictive information and transfer entropy in different conditions.
Figures a, c, e show behavior of predictive information when no noise (a), additive noise (b)
and mixing between channels (c) is present. Mixing coefficient was set to 0.3 and additive
noise had amplitude 0.05. Interaction and analysis lags were set to 8.

21



T-61.5900 Special assignment Arto Meriläinen, 79221M

a)

b)

c)

Figure 9: Sensitivity of phase locking value. Figure a shows the sensitivity when no noise
is present. The effect of additive noise to the sensitivity is shown in figure b. Figure c
shows the effect of additive noise. Mixing coefficient was set to 0.3 and additive noise had
amplitude 0.05. Interaction and analysis lags were set to 8.
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4 Discussion

Active brain networks can be discovered with various different methods. This report de-
scribed directional metrics extensions for two information theory based measures and tested
their performance using simulated data. In addition, the same performance analyses were
performed for phase locking value, which is commonly applied while analyzing the connec-
tivity.

4.1 Detecting the Interaction

In noiseless conditions predictive information, transfer entropy and phase locking value
perform adequately: The measures were able to distinguish the direction or connectivity
in all cases. In addition, all measures showed good resistance against additive noise. Ac-
cording to the results the sensitivity of predictive information is better than the sensitivity
of transfer entropy. Interestingly, both measures performed adequately even when analy-
sis lag differed much from interaction lag. Phase locking value performance was excellent
when neither noise nor volume conduction was present.

Despite the predictive information and phase locking value performed reliable in the noise-
less simulations, the measures cannot be considered reliable. The measures do not utilize
the history information of the target channel. Thereby, both phase locking value and
predictive information are vulnerable to wrong positive results. Thus, transfer entropy
should be considered superior to predictive information and phase locking value and usage
of transfer entropy should be preferred in real analysis.

4.2 Behavior in Noisy Conditions

Although the results show that all measures performed correctly in noiseless conditions,
relatively small mixing, 0.3, affected significantly to the test results. All measures showed
issues when the analysis lag was small and the interaction lag was about 15 samples. Phase
locking value did not produce significantly high values and both directional interaction
measures failed to find expected direction from the observed interaction strength values.
Thus, the directional measures should be considered unpredictable and unreliable when
using small interaction lag. The literature show that transfer entropy for real valued
data has good tolerance against linear mixing [14], thus the issue may be related to data
preprocessing.

Although the volume conduction issue definitely is notable, it can be explained by the
Morlet filter: The issue is present when the interaction lag is half of the Morlet filter
f0. At that particular point, the signaling sample has 180-degree difference to the target
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sample. As these samples are summed in simulation data generation, the phase difference
is reduced. Therefore, the issue can be explained as the property of the filter.

4.3 Estimating the Confidence Intervals

The previous tests were performed using artificial simulated data with known confidence
intervals. However, the intervals are unknown when dealing with the real data and the
confidence intervals must be estimated from the data itself. Usually the confidence intervals
are estimated using surrogate data [1, 20], which can be considered as a good noise in
connectivity analyses. The results show that the confidence intervals can be estimated
from surrogate data for all measures when no mixing or additive noise is present. In
addition, the additive noise had only minor effect to the specificity of confidence intervals.
However, confidence intervals were estimated incorrectly for phase locking value when even
small mixing was present. Predictive information had slightly better specificity compared
to phase locking value. The specificity was always higher for transfer entropy compared to
predictive information and phase locking value.

4.4 Sensitivity of the Measures

Sensitivity of investigated measures are adequate. Phase locking value performs adequately
in noiseless conditions and when additive noise is present. However, the phase locking
value has virtually 100% sensitivity when 0.3 mixing is present, which can be explained by
the bad specificity of the confidence intervals of phase locking value. Compared to phase
locking value, the sensitivity of transfer entropy is a little lower in all conditions. Predictive
information has a good sensitivity in all conditions.

4.5 Future Development

The future development of the measure consists of several different parts. First, the entropy
should be estimated by utilizing more reliable methods. Currently, the entropy is estimated
with a simple histogram estimate, which is very sensitive to the selected number of bins.
Thus, the histogram estimate is not accurate, but indicative. This issue could be overcome
by estimating parameters for some circular distribution, which has a closed form solution
for entropy. Generalized von Mises distribution [21] gives very promising starting point.
Another solution could be estimating the entropy using some another entropy estimate.

Second, the filtering step causes inconveniences to the structure of the data. The issue
could be solved by using some other filter, which would provide the phase information.
Another possibility would be usage of Hilbert transform.
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Third, the full potential of the conditional mutual information was not utilized. As noted
before, this feature can be utilized by adding other condition variables. In theory, the
effect of volume conduction could be reduced by conditioning the mutual information by
the present of the source time series. This idea has been applied for real valued data [11,16].

Fourth, the indirect influence was not considered in the report. In the real data, there
are hundreds of channels instead of two. If causal relations X → Y and Y → Z exist,
transfer entropy will not detect only causal relations X → Y and Y → Z, but also an
indirect relation X → Z! In theory, this issue can be solved by conditioning the mutual
information by the history of some third channel. Computationally it is not feasible to
condition the mutual information by all other channels.

Finally, the study of network hierarchies was excluded from this work. The developed
index can be used to create a distance matrix between brain regions, which is valuable
information alone. However, in order to analyze the networks in the large scale, different
network algorithms could be used to find hubs and other interesting features from the
distance data.
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5 Conclusions

This report extended predictive information and transfer entropy to directional metrics.
The results indicate that the measures perform adequately for simulated data. The mea-
sures were able to find causal relationships in noiseless conditions. The presence of linear
mixing and additive noise affect the measures, but the simulations show that the measures
tolerated the noise much better compared to phase locking value. The results show that
the confidence intervals can be estimated using surrogate data for predictive information
and transfer entropy.

Although both information theory based measures performed adequately, the usage of
transfer entropy should be prefered due to theoretical limitations of predictive information.
The predictive information does not utilize the information about the past of both time
series making it vulnerable for false positive results in situations where the phase difference
exists without phase causality.

Simulation results indicate that surrogate method should not be used for estimating con-
fidence intervals in phase locking value based analyses. Even small mixing affects to the
specificity of confidence interval estimates, which makes false positive results likely.
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